精英家教网 > 初中数学 > 题目详情
14.如图,三角形纸片ABC中,∠C=90°,AC=4,BC=3.将纸片折叠,使点B落在AC边上的点D处,折痕与BC,AB分别交于点E,F.
(1)设BE=x,DC=y,求y关于x的函数关系式,并确定自变量x的取值范围;
(2)当△ADF是直角三角形时,求BE的长.

分析 (1)根据勾股定理即可得出y2+(3-x)2=x2,从而得出y=$\sqrt{6x-9}$,由于当E和C重合时,x最大,最大值为3,6x-9≥0,即可求得x的取值;
(2)分两种情况分别讨论即可求得.

解答 解:(1)∵BE=x,
∴DE=x,EC=3-x,
在RT△DEC中,DC2+EC2=DE2,即y2+(3-x)2=x2
∴y=$\sqrt{6x-9}$,
当E和C重合时,x最大,最大值为3,
∴$\frac{3}{2}$≤x≤3;

(2)分两种情况:
①如图1,当∠ADF=90°时,则FD∥BC,
∴∠AFD=∠B,
∵∠EDF=∠B,
∴∠AFD=∠EDF,
∴DE∥AB,
∴△DEC∽△ABC,
∴$\frac{DE}{AB}=\frac{CE}{BC}$,即$5\frac{x}{\;}$=$\frac{3-x}{3}$,
解得x=$\frac{15}{8}$,
∴BE=$\frac{15}{8}$
②如图2,当∠AFD=90°时,作EH⊥AB于H,则△BEH∽△BAC,
∵BE=x,
∴BH=$\frac{3}{5}$x,HE=$\frac{4}{5}$x,
∵∠BFE=45°,
∴HF=HE=$\frac{4}{5}$x,
∴BF=DF=$\frac{7}{5}$x,
∴AF=5-$\frac{7}{5}$x,
∵△ADF∽△ABC,
∴$\frac{\frac{7}{5}x}{5-\frac{7}{5}x}$=$\frac{3}{4}$,
解得x=$\frac{75}{49}$,即BE=$\frac{75}{49}$,
∴由①②得,BE=$\frac{15}{8}$或$\frac{75}{49}$.

点评 该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用勾股定理等几何知识点来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图1所示,其中一块三角板的直角边AC⊥数轴,AC的中点过数轴原点O,AC=6,斜边AB交数轴于点G,点G对应数轴上的数是3;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果点H对应的数轴上的数是-1,点F对应的数轴上的数是-3,则△AGH的面积是6,△AHF的面积是3;
(2)如图2,设∠AHF的平分线和∠AGH的平分线交于点M,若∠M=26°,求∠HAO的大小;
(3)如图2,设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,设∠HAO=x°(0<x<60),试探索∠N+∠M的和是否为定值,若不是,请说明理由;若是定值,请直接写出此值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知:如图所示,等边三角形ABC中,D是BC边的中点,DE⊥AC于E,∠CDE=30°,若CE=3cm,则AE=9cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某玩具工厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.
(1)求在两种销售方式下,每个月销售多少件时,所得利润相等?
(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=$\sqrt{5}$,BC=$\sqrt{2}$;
小明同学的做法是:由勾股定理,得AB=AC=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,BC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使AB′=A′C′=5,B′C′=$\sqrt{10}$.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:(-1)2014-(-3)+$\root{3}{-64}$+$\sqrt{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AF⊥AB,BC⊥AB,垂足分别为点A,B,点D是AB延长线上一点,且满足AD=BC,DF=CD.
(1)试判断AF与BD的数量关系,并说明理由;
(2)已知点E是BC延长线上一点,且CE=BD,连接AE,若CD=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)$\frac{2a-4}{{a}^{2}+6a+9}$÷$\frac{{a}^{2}-2a}{a+3}$•(a+3)
(2)($\frac{{a}^{2}b}{{c}^{2}}$)3•($\frac{-{c}^{2}}{{a}^{2}b}$)÷($\frac{bc}{a}$)4
(3)$\frac{{x}^{2}}{x-1}$-x-1
(4)1-(a-$\frac{1}{1-a}$)2÷$\frac{{a}^{2}-a+1}{{a}^{2}-2a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.三角形ABC中,AD是角平分线,AD的中垂线EF交BC的延长线于F,求证:FD是FB和FC的比例中项.

查看答案和解析>>

同步练习册答案