ÔÚÊýѧ¿ÎÉÏ£¬ÀÏʦ¸ø³öÒÔÏÂÌõ¼þºÍÎÊÌ⣬ҪÇóͬѧÃÇ̽Ë÷²¢µÃ³ö½áÂÛ£º
£¨1£©µãA1£¬A2£¬A3ÊÇÅ×ÎïÏßy=2x2ͼÏóÉϵÄÈýµã£¬ÈôA1£¬A2£¬A3ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬Çó¡÷A1A2A3µÄÃæ»ý£»
£¨2£©Èô½«£¨1£©ÖеÄÅ×ÎïÏ߸ÄΪy=2x2-4x+7£¬ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ý±ä²»±ä£¿ÇëÇó³ö¡÷A1A2A3µÄÃæ»ý£»
£¨3£©Èô½«Å×ÎïÏ߸ÄΪy=ax2+bx+c £¨a£¾0£©£¬ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ýÓÖÊǶàÉÙÄØ£¿Çë˵Ã÷ÀíÓÉ£»
£¨4£©´ÓÖÐÄã·¢ÏÖÁËʲô¹æÂÉ£¿ÇëÓÃÒ»¾ä»°¼òµ¥¹éÄÉ£®
·ÖÎö£º£¨1£©ÓɵãA1£¬A2£¬A3ÊÇÅ×ÎïÏßy=2x2ͼÏóÉϵÄÈýµã£¬ÈôA1£¬A2£¬A3ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬¼´¿ÉÇóµÃA1£¬A2£¬A3ÈýµãµÄ×Ý×ø±ê£¬ÓÖÓÉS¡÷A1A2A3=SÌÝÐÎA1BDA3-SÌÝÐÎA1BCA2-SÌÝÐÎA2CDA3£¬¼´¿ÉÇóµÃ¡÷A1A2A3µÄÃæ»ý£»
£¨2£©½â·¨Í¬£¨1£©£¬¼´¿ÉµÃÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ý²»±ä£¬¼´¡÷A1A2A3µÄÃæ»ýΪ2£»
£¨3£©ÓɵãA1£¬A2£¬A3ÊÇÅ×ÎïÏßy=ax2+bx+c £¨a£¾0£©Í¼ÏóÉϵÄÈýµã£¬ÈôA1£¬A2£¬A3ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬¼´¿ÉÇóµÃA1£¬A2£¬A3ÈýµãµÄ×Ý×ø±ê£¬ÓÖÓÉS¡÷A1A2A3=SÌÝÐÎA1BDA3-SÌÝÐÎA1BCA2-SÌÝÐÎA2CDA3£¬¼´¿ÉÇóµÃ¡÷A1A2A3µÄÃæ»ý£»
£¨4£©¿ÉµÃ¹æÂÉ£ºÈôµãA1 A2 A3ÊÇÅ×ÎïÏßy=ax2+bx+cͼÏóÉϵÄÈýµã£¬ÇÒA1£¬A2£¬A3£¬ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬Ôò¡÷A1A2A3µÄÃæ»ýµÈÓÚ¶þ´ÎÏîϵÊýµÄ¾ø¶ÔÖµ
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨1£©µ±µãA1  A2  A3ÊÇÅ×ÎïÏßy=2x2ͼÏóÉϵÄÈýµã£¬
ÈôA1£¬A2£¬A3£¬ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬
¡àA1£¬A2£¬A3ÈýµãµÄ×Ý×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ2£¬8£¬18£¬
¡àS¡÷A1A2A3=SÌÝÐÎA1BDA3-SÌÝÐÎA1BCA2-SÌÝÐÎA2CDA3=
1
2
¡Á£¨2+18£©¡Á2-
1
2
¡Á£¨8+18£©¡Á1-
1
2
¡Á£¨2+8£©¡Á1=2£»                 £¨4·Ö£©

£¨2£©Èô½«£¨1£©ÖеÄÅ×ÎïÏ߸ÄΪy=2x2-4x+7£¬
ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ý²»±ä£¬¼´£º¡÷A1A2A3µÄÃæ»ýΪ2£»                                    £¨4·Ö£©

£¨3£©Èô½«Å×ÎïÏ߸ÄΪy=ax2+bx+c £¨a£¾0£©£¬
¡ßÈôA1£¬A2£¬A3£¬ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬
¡àA1£¬A2£¬A3ÈýµãµÄ×Ý×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪa+b+c£¬4a+2b+c£¬9a+3b+c£¬
¡àS¡÷A1A2A3=SÌÝÐÎA1BDA3-SÌÝÐÎA1BCA2-SÌÝÐÎA2CDA3=
1
2
¡Á£¨a+b+c+9a+3b+c£©¡Á2-
1
2
¡Á£¨a+b+c+4a+2b+c£©¡Á1-
1
2
¡Á£¨4a+2b+c+9a+3b+c£©¡Á1=a£»
¡à¡÷A1A2A3µÄÃæ»ýΪa£» £¨2·Ö£©

£¨4£©´ÓÖз¢ÏÖ¹æÂÉ£ºÈôµãA1  A2  A3ÊÇÅ×ÎïÏßy=ax2+bx+cͼÏóÉϵÄÈýµã£¬
ÇÒA1£¬A2£¬A3£¬ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬
Ôò¡÷A1A2A3µÄÃæ»ýµÈÓÚ¶þ´ÎÏîϵÊýµÄ¾ø¶ÔÖµ£®----£¨2·Ö£©
µãÆÀ£º´ËÌ⿼²éÁ˵ãÓë¶þ´Îº¯ÊýµÄ¹ØϵÒÔ¼°Èý½ÇÐÎÃæ»ýµÄÇó½â·½·¨£®´ËÌâÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇץס¡÷A1A2A3µÄÃæ»ýµÄÇó½â·½·¨£¬×¢ÒâS¡÷A1A2A3=SÌÝÐÎA1BDA3-SÌÝÐÎA1BCA2-SÌÝÐÎA2CDA3£¬×¢ÒâÊýÐνáºÏ˼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

11¡¢Êýѧ¿ÎÉÏÀÏʦ¸ø³öÏÂÃæµÄÊý¾Ý£¬£¨¡¡¡¡£©ÊǾ«È·µÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýѧѧϰ¹ý³ÌÖУ¬Í¨³£ÊÇÀûÓÃÒÑÓеÄ֪ʶÓë¾­Ñ飬ͨ¹ý¶ÔÑо¿¶ÔÏó½øÐй۲졢ʵÑé¡¢ÍÆÀí¡¢³éÏó¸ÅÀ¨£¬·¢ÏÖÊýѧ¹æÂÉ£¬½ÒʾÑо¿¶ÔÏóµÄ±¾ÖÊÌØÕ÷£®ÔÚÊýѧ¿ÎÉÏ£¬ÀÏʦ¸ø³öÕâÑùÒ»µÀÌ⣺
ÎÒÃÇÖªµÀ£º2+2=2¡Á2£¬3+
3
2
=3¡Á
3
2
£¬4+
4
3
=4¡Á
4
3
£¬¡­
ÇëÄã¸ù¾ÝÉÏÃæµÄ²ÄÁϹéÄɳöa¡¢b£¨a£¾1£¬b£¾1£©Ò»¸öÊýѧ¹Øϵʽ£®
ÎÒÃÇÓɴ˵óöµÄ½áÂÛΪ£ºÉèÆäÖÐÒ»¸öÊýΪa£¬ÁíÒ»¸öÊýΪb£¬Ôòb=
a
a-1
£»
ÔÚÊýѧ¿ÎÉÏС¸ÕͬѧÓÖ·¢ÏÖÁËÒ»¸öеĽáÂÛÊÇ£º
a
b
+
b
a
+2=ab
£»
ÄãÈÏΪС¸ÕµÄ½áÂÛÕýÈ·Âð£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔÚÊýѧ¿ÎÉÏ£¬ÀÏʦ¸ø³öÒÔÏÂÌõ¼þºÍÎÊÌ⣬ҪÇóͬѧÃÇ̽Ë÷²¢µÃ³ö½áÂÛ£º
£¨1£©µãA1£¬A2£¬A3ÊÇÅ×ÎïÏßy=2x2ͼÏóÉϵÄÈýµã£¬ÈôA1£¬A2£¬A3ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬Çó¡÷A1A2A3µÄÃæ»ý£»
£¨2£©Èô½«£¨1£©ÖеÄÅ×ÎïÏ߸ÄΪy=2x2-4x+7£¬ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ý±ä²»±ä£¿ÇëÇó³ö¡÷A1A2A3µÄÃæ»ý£»
£¨3£©Èô½«Å×ÎïÏ߸ÄΪy=ax2+bx+c £¨a£¾0£©£¬ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ýÓÖÊǶàÉÙÄØ£¿Çë˵Ã÷ÀíÓÉ£»
£¨4£©´ÓÖÐÄã·¢ÏÖÁËʲô¹æÂÉ£¿ÇëÓÃÒ»¾ä»°¼òµ¥¹éÄÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011-2012ѧÄêÕã½Ì°æ¾ÅÄ꼶£¨ÉÏ£©ËØÖʲâÊÔÊýѧÊÔ¾í£¨10Ô·ݣ©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔÚÊýѧ¿ÎÉÏ£¬ÀÏʦ¸ø³öÒÔÏÂÌõ¼þºÍÎÊÌ⣬ҪÇóͬѧÃÇ̽Ë÷²¢µÃ³ö½áÂÛ£º
£¨1£©µãA1£¬A2£¬A3ÊÇÅ×ÎïÏßy=2x2ͼÏóÉϵÄÈýµã£¬ÈôA1£¬A2£¬A3ÈýµãµÄºá×ø±ê´Ó×óÖÁÓÒÒÀ´ÎΪ1£¬2£¬3£¬Çó¡÷A1A2A3µÄÃæ»ý£»
£¨2£©Èô½«£¨1£©ÖеÄÅ×ÎïÏ߸ÄΪy=2x2-4x+7£¬ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ý±ä²»±ä£¿ÇëÇó³ö¡÷A1A2A3µÄÃæ»ý£»
£¨3£©Èô½«Å×ÎïÏ߸ÄΪy=ax2+bx+c £¨a£¾0£©£¬ÆäËûÌõ¼þ²»±ä£¬ÄÇô¡÷A1A2A3µÄÃæ»ýÓÖÊǶàÉÙÄØ£¿Çë˵Ã÷ÀíÓÉ£»
£¨4£©´ÓÖÐÄã·¢ÏÖÁËʲô¹æÂÉ£¿ÇëÓÃÒ»¾ä»°¼òµ¥¹éÄÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸