精英家教网 > 初中数学 > 题目详情
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′精英家教网B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=
3
5
,sinA′=
1
2

(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)
分析:此题首先把实际问题转化为解直角三角形问题来解决,(1)先过点O作OD⊥AB于点D,交A′C于点E,则得出EC=DB=OO′=2,ED=BC,通过解直角三角形AOD和A′OE得出OD与OE,从而求出BC.
(2)先解直角三角形A′OE,得出A′E,然后求出B′C.
解答:精英家教网解:(1)过点O作OD⊥AB于点D,交A′C于点E
根据题意可知EC=DB=OO′=2米,ED=BC
∴∠A′ED=∠ADO=90°.
在Rt△AOD中,∵cosA=
AD
OA
=
3
5
,OA=10米,
∴AD=6米,
∴OD=
OA2-AD2
=8米.
在Rt△A′OE中,
∵sinA′=
OE
OA′
=
1
2

OA′=10米
∴OE=5米.
∴BC=ED=OD-OE=8-5=3米.

(2)在Rt△A′OE中,
A′E=
A′O2-OE2
=5
3
米.
∴B′C=A′C-A′B′
=A′E+CE-AB
=A′E+CE-(AD+BD)
=5
3
+2-(6+2)
=5
3
-6(米).
答:此重物在水平方向移动的距离BC是3米,此重物在竖直方向移动的距离B′C是(5
3
-6)米.
点评:此题考查了解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题来解决,本题运用了直角三角形函数及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•建阳市模拟)小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高度OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊到B′处,紧绷着的吊绳A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=
3
5
,sinA′=
1
2

(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.OA=10米,当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.且cosA=
3
5
,sinA′=
1
2

(1)求此重物在水平方向移动的距离及在竖直方向移动的距离;
(2)若这台吊车工作时吊杆最大水平旋转角度为120°,吊杆与水平线的倾角可以从30°转到60°,求吊车工作时,工作人员不能站立的区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

.(本题10分) 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不

变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.且cosA=sinA′=

1.(1) 求此重物在水平方向移动的距离及在竖直方向移动的距离;

2.(2) 若这台吊车工作时吊杆最大水平旋转角度为120°,吊杆与水平线的倾角可以从30°转到60°,求吊车工作时,工作人员不能站立的区域的面积。

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO=2米.当吊臂顶端由A点抬升至A点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B处,紧绷着的吊缆A′B=ABAB垂直地面O′B于点BA′B垂直地面O′B于点C,吊臂长度OA=OA=10米,且cosA=sinA=

⑴求此重物在水平方向移动的距离BC
⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)

查看答案和解析>>

同步练习册答案