精英家教网 > 初中数学 > 题目详情
点O到直线l的距离为5,如果以点O为圆心的圆上只有两点到直线l的距离为2,则该圆的半径r的取值范围是______.
以点O为圆心的圆上只有两点到直线l的距离为2,则两个交点在到直线l的距离是2的直线m上.
则直线m到圆心O的距离是:2+5=7或5-2=3.
圆O与直线m相交,因而该圆的半径r的取值范围是3<r<7.
故答案是:3<r<7.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若AC=2
6
,AD=4,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,则r=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA,PB是⊙O的两条切线,A,B分别是切点,点C是
AB
上任意一点,连接OA,OB,CA,CB,∠P=70°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

AB是⊙O的直径,D是⊙O上一动点,延长AD到C使CD=AD,连接BC,BD.
(1)证明:当D点与A点不重合时,总有AB=BC;
(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y;
(3)BC与⊙O是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x为何值时相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,AB为⊙O的直径,AC与⊙O相切于点A,CEAB交⊙O于D、E.求证:EB2=CD•AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠C=90°,AC=6,BC=8,CD为直径的⊙O与AB相切于E,则⊙O的半径是(  )
A.2B.2.5C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么______秒种后⊙P与直线CD相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)如果BC=10,AB=12,求CG的长.

查看答案和解析>>

同步练习册答案