在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm
(1)求这个三角形的斜边AB的长和斜边上的高CD的长;
(2)求斜边被分成的两部分AD和BD的长.
(1)AB=3.5 cm,CD=1.68cm;(2)AD=1.26cm,BD= 2.24cm
【解析】
试题分析:(1)根据勾股定理求得该直角三角形的斜边,根据直角三角形的面积,求得斜边上的高等于斜边的乘积÷斜边;
(2)在(1)的基础上根据勾股定理进行求解.
(1)∵△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm
∴AB2=AC2+BC2=2.12+2.82=12.25
∴AB=3.5 cm
∵S△ABC=AC·BC=AB·CD
∴AC·BC=AB·CD
∴CD===1.68(cm)
(2)在Rt△ACD中,由勾股定理得:
AD2+CD2=AC2
∴AD2=AC2-CD2=2.12-1.682
=(2.1+1.68)(2.1-1.68)
=3.78×0. 42=2×1.89×2×0.21
=22×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm)
∴BD=AB-AD=3.5-1.26=2.24(cm).
考点:此题考查了勾股定理
点评:解答本题的关键是熟记直角三角形斜边上的高等于两条直角边的乘积÷斜边.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com