【题目】如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB与△BEC全等吗?为什么?
(2)图1中,AD、DE、CE有怎样的等量关系?说明理由.
(3)将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?直接写出结果.
【答案】(1)△ADB≌△BEC,理由见解析;(2)CE+AD=DE,理由见解析;(3)CE﹣AD=DE,理由见解析;
【解析】
(1)求出∠ADB=∠ABC=∠BEC=90°,求出∠DAB=∠CBE,根据AAS推出△ADB≌△BEC即可;
(2)根据全等得出AD=BE,CE=DB,即可求出答案;
(3)证明过程和(1)(2)类似.
解:(1)△ADB≌△BEC,
理由是:∵AD⊥PQ,CE⊥PQ,
∴∠ADB=∠ABC=∠BEC=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△BEC中,
,
∴△ADB≌△BEC(AAS);
(2)CE+AD=DE,
理由是:∵△ADB≌△BEC,
∴AD=BE,CE=DB,
∵DB+BE=DE,
∴CE+AD=DE;
(3)CE-AD=DE,
理由是:∵AD⊥PQ,CE⊥PQ,
∴∠ADB=∠ABC=∠BEC=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△BEC中,
,
∴△ADB≌△BEC(AAS),
∴AD=BE,CE=DB,
∵DB-BE=DE,
∴CE-AD=DE.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=8cm,AB=10cm,点P由点C出发以每秒2cm的速度沿CA向点A运动(不运动至A点),⊙O的圆心在BP上,且⊙O分别与AB、AC相切,当点P运动2秒钟时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解七年级学生的身体素质情况,体育老师对该年级部分学生进行了一分钟跳绳次数的测试,并把测试成绩绘制成如图所示的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
(1)参加测试的学生有多少人?
(2)求,的值,并把频数直方图补充完整.
(3)若该年级共有名学生,估计该年级学生一分钟跳绳次数不少于次的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法计算结果很简单,由此又发现一个新的乘法公式: _________________________(请用含a、b的字母表示)
(3)下列各式能用你发现的乘法公式计算的是( )
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式计算: =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点O与坐标原点重合,顶点A、C在坐标轴上,,将矩形沿折叠,使点A与点C重合.
(1)求点E的坐标;
(2)点P从O出发,沿折线方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设P的运动时间为t,的面积为S,求S与t的关系式,直接写出t的取值范围;
(3)在(2)的条件下,当时,在平面直角坐标系中是否存在点Q,使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.
(1)求证:OE=OF;
(2)那么当点O运动到AC的中点时,试判断四边形AECF的形状并说明理由;
(3)在(2)的前提下△ABC满足什么条件,四边形AECF是正方形?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=-3x的图象与反比例函数y=的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为12.
(1)求k的值;
(2)根据图象,当y<y时,写出自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com