【题目】如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE⊥DF,交AB于点E,交BC于点F,若AE=8,FC=6.
(1)求EF的长.
(2)求四边形BEDF的面积.
【答案】(1)EF的长为10;(2)S四边形BEDF=49.
【解析】
(1)首先连接BD,由已知等腰直角三角形ABC,可推出BD⊥AC且BD=CD=AD,∠ABD=45°再由DE丄DF,可推出∠FDC=∠EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,从而得出BE=FC=6,那么AB=14,则BC=14,BF=8,再根据勾股定理求出EF的长;
(2)由△EDB≌△FDC,可得S四边形BEDF= S△CDF+ S△BDF=S△BDC,再由D为AC中点,可得S△BDC=S△ABC,由此即可求得答案.
(1)连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC,BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
,
∴△EDB≌△FDC(ASA),
∴BE=FC=6,
∴AB=AE+BE=8+6=14,则BC=14,
∴BF=BC-CF=14-6=8,
在Rt△EBF中, EF2=BE2+BF2=62+82,
∴EF=10,
答:EF的长为10;
(2)∵△EDB≌△FDC,
∴S四边形BEDF=S△BDE+S△BDF=S△CDF+ S△BDF=S△BDC,
∵D为AC中点,
∴S△BDC=S△ABC,
∵S△ABC=ABBC,AB=BC=14,
∴S△ABC==98,
∴S四边形BEDF=49.
科目:初中数学 来源: 题型:
【题目】关于x的方程|x2﹣x|﹣a=0,给出下列四个结论:①存在实数a,使得方程恰有2个不同的实根; ②存在实数a,使得方程恰有3个不同的实根;③存在实数a,使得方程恰有4个不同的实根;④存在实数a,使得方程恰有6个不同的实根;其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处.
(1)如图1,若折痕,且,求矩形ABCD的周长;
(2)如图2,在AD边上截取DG=CF,连接GE,BD,相交于点H,求证:BD⊥GE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题情境)
徐老师给爱好学习的小敏和小捷提出这样一个问题:
如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC
小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)…
小捷的证明思路是:延长CB至点E,使BE=AB,连接AE. 可以证得:AE=DE(如图3)…
请你任意选择一种思路继续完成下一步的证明.
(变式探究)
“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变.(如图4),AB+BD=AC成立吗?若成立,请证明;若不成立,写出你的正确结论,并说明理由.
(迁移拓展)
△ABC中,∠B=2∠C. 求证:AC2=AB2+ABBC. (如图5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在图(1)中编号①②③④的四个三角形中,关于y轴对称的两个三角形的编号为_________;关于x轴对称的两个三角形的编号为___________;
(2)在图(2)中,画出ΔABC关于x轴对称的图形ΔA1B1C1。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,若点是线段上的动点(不与,重合),分别以、为边向线段的同一侧作等边和等边.
(1)图1中,连接、,相交于点,设,那么 ;
(2)如图2,若点固定,将绕点按顺时针方向旋转(旋转角小于),此时的大小是否发生变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为 A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
成绩x(分) | 等级 | 人数 |
x≥90 | A | 12 |
75≤x<90 | B | m |
60≤x<75 | C | n |
x<60 | D | 9 |
请根据所给信息,解答下列问题:
(1)本次被抽取参加英语口语测试的学生共有多少人?
(2)求扇形统计图中 C 级的圆心角度数;
(3)若该校七年级共有学生 640人,根据抽样结课,估计英语口语达到 B级以上(包括B 级)的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式;
(3)y轴上是否存在一点P,使得S△PAB=,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com