精英家教网 > 初中数学 > 题目详情

【题目】如图,大楼外墙有高为AB的广告牌,由距离大楼20米的点C(即CD=20米)观察它的顶部A的仰角是55°,底部B的仰角是42°,求AB的高度.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

【答案】解:由已知可得:∠ACD=55°,∠BCD=42°,CD=20,
又∵tan∠ACD= ,tan∠BCD=
∴AD=CDtan∠ACD,BD=CDtan∠BCD,
∴AB=AD﹣BD=CDtan∠ACD﹣CDtan∠BCD
≈20×1.43﹣20×0.90
≈10.6(m)
答:AB的高度为10.6m.
【解析】利用已知得出AD=CDtan∠ACD,BD=CDtan∠BCD,进而利用AB=AD﹣BD求出即可.
【考点精析】关于本题考查的关于仰角俯角问题,需要了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在直角△ABC中,∠ACB90°B60°ADCE分别是∠BAC和∠BCA的平分线,ADCE相交于点F.

(1)求∠EFD的度数;

(2)判断FEFD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⑴已知xy=5,x+y=6,则x-y=______

⑵已知(2016-a)(2017-a)=5,(a-2016)2+(2017-a)2的值为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(﹣2,﹣4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.

(1)求此抛物线的解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣ ,顶点坐标为(﹣ )].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 2﹣|﹣7|+(5 +25)0﹣(﹣1)2014

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x千克(x>0),总费用为y元,现有两种购买方式. 方式一:若商家赞助厂家建设费11500元,则所购茶叶价格为130元/千克;(总费用=赞助厂家建设费+购买茶叶费)
方式二:总费用y(元)与购买茶叶数量x(千克)满足下列关系式:y=
请回答下面问题:
(1)写出购买方式一的y与x的函数关系式;
(2)如果购买茶叶超过150千克,说明选择哪种方式购买更省钱;
(3)甲商家采用方式一购买,乙商家采用方式二购买,两商家共购买茶叶400千克,总费用共计74600元,求乙商家购买茶叶多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知m为常数,整式(m+2x2y+mxy23x2y的和为单项式.则m_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在□ABCD中,AEBCEDF平分ADC 交线段AEF.

1)如图1,若AE=ADADC=60, 请直接写出线段CDAF+BE之间所满足的等量关系;

2)如图2, AE=AD,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论加以证明, 若不成立, 请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中, 向右平移5个单位向上平移4个单位之后得到的图象

(1)两点的坐标分别为____________________________.

(2)作出平移之后的图形.

(3)求△ABC的面积.

查看答案和解析>>

同步练习册答案