【题目】一个二次函数图象的顶点坐标为(-1,2),于y轴交点的纵坐标为
(1)求这个二次函数的表达式;
(2)在给定的直角坐标系中,画出这个函数的图象;
(3) 已知两点A(-2020,a),B(2019,b)在此二次函数图象上,请比较a与b的大小。a b(用>,=或<填空)
(4)根据图像,当-2<x<2时,请直接写出y的取值范围
【答案】(1);(2)答案见解析;(3)>; (4)
【解析】
(1)设顶点式解析式为y=a(x+1)2+2,然后将点(0,)代入求出a的值,从而得解;(2)根据二次函数图象的画法作出图象即可;(3)利用抛物线的对称轴及抛物线的对称性进行比较;(4)将x=2和x=-2代入解析式求解,然后根据函数图象,写出对应的y的取值范围即可.
解:(1)∵二次函数图象的顶点坐标为(-1,2),于y轴交点的纵坐标为,
∴设这个二次函数的表达式为y=a(x+1)2+2,
又∵图象过点(0,),
∴a(0+1)2+2=,
∴a=,
∴这个二次函数的表达式为;
(2)如图即为所求:
(3)由可知抛物线对称轴为直线x=-1且开口向下;
∵
∴当x=-2020和x=2018时,其函数值相等,等于a
又∵在对称轴右侧,y随x的增大而减小
∴当x=2019时,其函数值b小于当x=2018时的函数值a
故填:>
(4)由图像可知,当x=2时,y=;当x=-2时,y=,且抛物线顶点坐标为(-1,2).
∵抛物线开口向下
∴当-2<x<2时,
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知点在线段上,在和中,,,
,且为的中点.
(1)连接并延长交于,求证:;
(2)直接写出线段与的关系: ;
(3)若将绕点逆时针旋转,使点在线段的延长线上(如图②所示位置),则(2)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.已知顶点P的坐标为(-3,-4),线段PC之长为3
(1)求二次函数解析式。
(2)M为直线l上一点,且以M,C,O为顶点的三角形与以A,C,O为顶点的三角形相似,请直接写出点M的坐标。
(3)直线l上是否存在点D,使△PBD的面积等于△PAC的面积的3倍?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,
点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球.
(1)请你用树状图或列表法列出所有可能的结果;
(2)求两次取得乒乓球的数字之积为奇数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=a(x﹣3)2+过点C(0,4),顶点为M,与x轴交于A、B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x=3;②点C在⊙D外;③在抛物线上存在一点E,能使四边形ADEC为平行四边形;④直线CM与⊙D相切.正确的结论是( )
A.①③B.①④C.①③④D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com