【题目】如图△ABC和△DEF,下列条件中①∠B=∠E=90°,AC=DF;②∠B=∠E,AB=DE,AC=DF;③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F;⑤∠A=∠D,BC=EF,∠C=∠F,能证明△ABC≌△DEF的是( )
A.③⑤B.①③⑤C.①②③⑤D.①②③④⑤
【答案】A
【解析】
根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.
解:①∠B=∠E=90°,AC=DF;两三角形只有两个相等的条件,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;
②∠B=∠E,AB=DE,AC=DF中∠B=∠E不是夹角,不能判定两三角形全等,故本选项错误;
③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF,可以用HL判定两个三角形全等;
④∠A=∠D,∠B=∠E,∠C=∠F,三角对应相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;
⑤∠A=∠D,BC=EF,∠C=∠F,可以用AAS判定两个三角形全等;
故可以判定两个三角形全等的是:③⑤
故选:A
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.
(1)求证:AB是⊙O的直径;
(2)判断DE与⊙O的位置关系,并加以证明;
(3)若⊙O的半径为3,∠BAC=60°,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.
(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“直观三角形”.
(1)抛物线y=x2的“直观三角形”是 .
A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形
(2)若抛物线y=ax2+2ax﹣3a的“直观三角形”是直角三角形,求a的值;
(3)如图,面积为12的矩形ABCO的对角线OB在x轴的正半轴上,AC与OB相交于点E,若△ABE是抛物线y=ax2+bx+c的“直观三角形”,求此抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+∠EDF=180°,以①②③中的两个作为条件,另一个作为结论,可以使结论成立的有几个( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个函数,如果它的自变量 x 与函数值 y 满足:当1≤x≤1 时,1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=x 均是“闭函数”. 已知 y ax2 bx c(a0) 是“闭函数”,且抛物线经过点 A(1,1)和点 B(1,1),则 a 的取值范围是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一、二两班共有95人,他们的体育达标率为60%,如果一班的体育达标率为40%,二班达标率为78%,求一、二两班的人数各是多少?若设一、二两班的学生人数各有x人、y人.
(1)填写表:
表格依次填_____,_____,_____,_____,_____.
(2)列出二元一次方程组:_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com