【题目】若直线 y mx 8 和 y nx 3 都经过 x 轴上一点 B,与 y 轴分别交于 A 、C.
(1)写出 A、C 两点的坐标,A ,C ;
(2)若∠ABO=2∠CBO,求直线 AB 和 CB 的解析式;
(3)在(2)的条件下若另一条直线过点 B,且交 y 轴于 E,若△ABE 为等腰三角形,写点 E 的坐标(只写结果).
【答案】(1)(0,8),(0,3);(2)直线AB:yx+8,直线CB:yx+3;(3)E的坐标为(0,18)或 (0,-2)或 (0,-8)或 (0,).
【解析】
(1)由两条直线解析式直接求出A、C两点坐标;
(2)由直线y=mx+8得B(,0),即OB,而AO=8,利用勾股定理求AB,根据角平分线性质得比例求m的值,再根据直线BC与x轴的交点为B求n即可;
(3)根据(2)的条件,分别以A、B为圆心,AB长为半径画弧与y轴相交,作AB的垂直平分线与y轴相交,分别求交点坐标.
(1)在y=mx+8和y=nx+3中,令x=0,得A(0,8),C(0,3).
故答案为:(0,8),(0,3);
(2)令直线y=mx+8中y=0,得B(,0),即OB,又AO=8,∴AB8.
∵∠ABO=2∠CBO,∴,即245,解得m,又由y=nx+3经过点B,得,解得n,∴直线AB:yx+8,直线CB:yx+3;
(3)由(2)可知OB=6,AB10,当△ABE为等腰三角形时,分三种情况讨论:
①以A为圆心,AB为半径画圆,与y轴交于两点E1,E2,则AE1=AE2=AB=10,∴E1(0,18),E2(0,-2);
②以B为圆心,AB为半径画圆,与y轴交于点E3,则OE3=OA=8,∴E3(0,-8);
③作线段AB的垂直平分线交y轴于E4,设E4(0,y),∴AE4=BE4,∴,解得:y=,∴E4(0,).
综上所述:E的坐标为(0,18)或 (0,-2)或 (0,-8)或 (0,).
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的顶点A、B坐标分别为(1,1)、(3,1),若把等边△ABC先沿x轴翻折,再向左平移1个单位”为第一次変换,则这样连续经过2017次变换后,等边△ABC的顶点C的坐标为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和CD交于点O,∠COE=90°,OC平分∠AOF,∠COF=35°.
(1)求∠BOD的度数;
(2)OE平分∠BOF吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )
A. B. 3 C. 2 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:
(1)求yB关于x的函数解析式;
(2)如果A,B两种机器人连续搬运5小时,那么B种机器人比A种机器人多搬运了多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,平行四边形的顶点的坐标分别是, ,点把线段三等分,延长分别交于点,连接, 则下列结论:; ③四边形的面积为;④,其中正确的有( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知三角形纸片,其中, ,点分别是上的点,连接.
(1)如图1,若将纸片沿折叠,折叠后点刚好落在边上点处,且,求的长;
(2)如图2,若将纸片沿折叠,折叠后点刚好落在边上点处,且.
试判断四边形的形状,并说明理由;
求折痕的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com