精英家教网 > 初中数学 > 题目详情
14.方程(x-2)(x-4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为(  )
A.6B.8C.10D.8或10

分析 先利用因式分解法解方程得到x1=2,x2=4,再根据三角形三边的关系判断等腰三角形的底为2,腰为4,然后计算这个等腰三角形的周长.

解答 解:∵(x-2)(x-4)=0,
∴x-2=0或x-4=0,
∴x1=2,x2=4,
∵当2为腰,4为底时,2+2=4,不符合三角形三边的关系,
∴等腰三角形的底为2,腰为4,
∴这个等腰三角形的周长=2+4+4=10.
故选C.

点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了等腰三角形的性质和三角形三边的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0)和点B(1,0),直线y=2x-1与y轴交于点C,与抛物线交于点C、D.
(1)求抛物线的解析式;
(2)求点D的坐标及CD的长度;
(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q.
①直接写出PQ的长;
②若点G在y轴正半轴上,当以G,P,Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D.
(1)点C的坐标为(8,8);
(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;
②当S=6时,求点B的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值(  )
A.5B.4$\sqrt{2}$C.4.75D.4.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.写出命题“正整数都大于0”的逆命题:大于0的数是正整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)(-1)2012+(-$\frac{1}{2}$)-2-(3.14-π)0
(2)(-x23•x2+(2x24-3(-x)3•x5
(3)(x-y+1)(x+y-1)
(4)1.2342+0.7662+2.468×0.766.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,点D为△ABC的三条内角平分线的交点,BE⊥AD于点E,

(1)当∠BAC=80°,∠ACB=60°时,∠BDC=130°.∠DBE=30°.
(2)当∠BAC=α,∠ACB=β时,用含有α的代数式表示∠BDC的度数,用含有β的代数式表示∠DBE的度数.
(3)如图2,若AD平分∠BAC,CD和BD分别平分△ABC的外角∠CBM和∠BCN,BE⊥AD于点E,(2)中的两个结论是否发生变化?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算题:
(1)(-12)+6+(-14)
(2)-3-4+5
(3)($\frac{1}{2}$+$\frac{5}{6}$-$\frac{7}{12}$)×(-60)
(4)(-9)÷$\frac{3}{2}$×$\frac{5}{6}$÷(-8)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边AB相交于点D,与边BC相切于点E.
(1)若AC=6,BC=10,求⊙O的半径.
(2)过点E作弦EF⊥AB于M,连接AF,若AD=4,∠AFE=60°,
①求劣弧EF的长.②求弦EF的长,并说明四边形ACEF是什么特殊四边形?

查看答案和解析>>

同步练习册答案