解:(1)结论成立.理由如下:
如图,连接OD;
∵OD=OB,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ACB=∠ODB,
∴OD∥AC;
又∵DE⊥AC,
∴DE⊥OD,即DE是⊙O的切线.
(2)当圆心O在AB上距B点为3x=
时,⊙O与AC相切.
如图所示,⊙O与AC相切于F,⊙O与AB相交于G.则OF⊥AC;
在RT△AOF中,sinA=OF:AO=3:5;
设OF=3X,AO=5X,则OB=OG=OF=3X,AG=2X,
∴8x=AB=5,
∴x=
,此时OB=3x=
时,
即当圆心O在AB上距B点为3x=
时,⊙O与AC相切.
分析:(1)结论仍然成立.在连接OD后,因为OD=OB,AB=AC,则有∠ABC=∠ACB=∠ODB,所以OD和AC永远平行;又DE和AC垂直,所以DE和OD也垂直,即DE是⊙O的切线.
(2)当⊙O与AC相切时,若假设切点为F,⊙O与AB相交于G,则OF和AC垂直,即△AOF是一个以AO为斜边的直角三角形;从而根据三角函数求得OF,OB的长,即可确定圆心O在AB的什么位置时,⊙O与AC相切.
点评:此题主要考查了切线的判定,以及圆中一些基本性质.