精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,ABAC,∠BAC45°,将ABC绕点A逆时针方向旋转得AEF,其中,EF是点BC旋转后的对应点,BECF相交于点D.若四边形ABDF为菱形,则∠CAE的大小是(  )

A. 45°B. 60°C. 75°D. 90°

【答案】A

【解析】

由题意可得ABCF,可得∠ACF=45°,根据AB=AC=AF,可得∠AFC=45°即∠CAF=90°且∠EAF=45°则可求∠CAE的大小.

ABDF是菱形,

ABCFABAF

∴∠BAC=∠ACF45°AFAC

∴∠ACF=∠AFC45°

∴∠CAF90°

∵将ABC绕点A逆时针方向旋转得AEF

∴∠EAF=∠BAC45°

∴∠EAC=∠CAF﹣∠EAF45°

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知长方形中,,点在边上,由运动,速度为,运动时间为秒,将沿着翻折至,点对应点为所在直线与边交与点

1)如图,当时,求证:

2)如图,当为何值时,点恰好落在边上;

3)如图,当时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题发现:

)如图①,中,,点边上任意一点,则的最小值为__________

)如图②,矩形中,,点、点分别在上,求的最小值.

)如图③,矩形中,,点边上一点,且,点边上的任意一点,把沿翻折,点的对应点为点,连接,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点PQ分别在BCAC上,AQPQPRPSPRAB于点RPSAC于点S,则下面结论错误是( )

A. BPR≌△QPSB. ASARC. QPABD. BAP=∠CAP

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax+bx+4a0)过点A(1, 1)B(5, 1),与y轴交于点C.

1)求抛物线表达式;

2)如图1,连接CB,以CB为边作CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且CBPQ的面积为30

①求点P坐标;

②过此二点的直线交y轴于F, 此直线上一动点G,GB+最小时,求点G坐标.

3)如图2,⊙O1过点ABC三点,AE为直径,点M 上的一动点(不与点AE重合),∠MBN为直角,边BNME的延长线交于N,求线段BN长度的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°

1)求城门大楼的高度;

2)每逢重大节日,城门大楼管理处都要在AB之间拉上绳子,并在绳子上挂一些彩旗,请你求出AB之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈cos22°≈tan22°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出学习了全等三角形的判定方法(“SSS”“SAS”“ASA”)后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究.

初步思考:将问题用符号语言表示为:在ABCDEF中,AC=DFBC=EF,∠ABC=DEF.然后对∠ABC进行分类,可分为ABC是锐角、直角、钝角三种情况进行探究。

第一种情况:当∠ABC是锐角时,AB=DE不一定成立;

第二种情况:当∠ABC是直角时,根据“HL”,可得ABCΔDEF,则AB=DE

第三种情况:当∠ADC是钝角时,则AB=DE.

如图,在ABCDEF中,AC=DFBC=EF,∠ABC=DEF,且∠ABC是钝角,求证:AB=DE.

方法归纳化归是一种有效的数学思维方式,一般是将未解决的问题通过交换转化为已解决的问题.观群发现第三种情况可以转化为第二种情况,如图,过点CCGAB交廷长线于点G.

(1)ΔDEF中用尺规作出DE边上的高FH,不写作法,保留作图痕迹;

(2)请你完成(1)中作图的基础上,加以证明AB=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数 y kx b k 0的图象与反比例函数 y m 0的图象交于 A (-1-1)B (n2)两点.

1)求反比例函数和一次函数的表达式;

2)点 P x 轴上,过点 P 做垂直于 x 轴的直线 l,交直线 AB 于点 C,若AB=2AC,请直接写出点 C 的坐标.

查看答案和解析>>

同步练习册答案