【题目】如图,梯形ABCD中,AD∥BC,∠ADC=90,AD= 2,BC= 4,.以AB为直径作⊙O,交边DC于E、F两点.
(1)求证:DE=CF.
(2)求直径AB的长.
【答案】(1)证明见解析;(2)AB=.
【解析】
(1)首先根据AD∥BC,∠ADC=90,OH⊥DC,得出AD∥OH∥BC,进而根据OA=OB得出DH=HC,然后根据垂径定理得出EH = HF,进而得出DE=CF;
(2)首先根据∠AGB =∠BCN = 90°,得出AG∥DC,然后根据AD∥BC,得出AD=CG.,进而得出BG,再根据三角函数得出AG,最后根据勾股定理得出AB.
(1)过点O作OH⊥DC,垂足为H.
∵AD∥BC,∠ADC=90,OH⊥DC,
∴∠BCN=∠OHC=∠ADC =90.
∴AD∥OH∥BC.
又∵OA=OB.
∴DH=HC.
∵OH⊥DC,OH过圆心,
∴EH = HF.
∴DH-EH =HC-HF.
即:DE=CF.
(2)过点A作AG⊥BC,垂足为点G,∠AGB = 90°,
∵∠AGB =∠BCN = 90°,
∴AG∥DC.
∵AD∥BC,
∴AD=CG.
∵AD= 2,BC= 4,
∴BG= BC-CG =2.
在Rt△AGB中,∵,
∴.
在Rt△AGB中,
∴AB=.
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.
(1)求m的值及这个二次函数的解析式;
(2)若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC,在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.
(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;
(2)当点P在射线BA上时,设,求y关于的函数解析式及定义域;
(3)联结PQ,直线PQ与直线BC交于点E,如果与相似,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)求△AOB的面积;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com