精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.
求证:BE⊥AC.
分析:先利用“SAS”证明△BFD和△ACD全等,根据全等三角形对应角相等可得∠BFD=∠C,然后求出∠DBF+∠C=90°,从而得到∠BEC=90°,再根据垂直的定义证明即可.
解答:证明:在△BFD和△ACD中,
BD=AD
∠BDF=∠ADC=90°
FD=CD

∴△BFD≌△ACD(SAS),
∴∠BFD=∠C,
∵AD⊥BC,
∴∠DBF+∠BFD=90°,
∴∠DBF+∠C=90°,
在△BCE中,∠BEC=180°-(∠DBF+∠C)=180°-90°=90°,
∴BE⊥AC.
点评:本题考查了全等三角形的判定与性质,是基础题,求出∠BEC=90°是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案