精英家教网 > 初中数学 > 题目详情
阅读理解:
条件:
如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+AB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.
应用:
(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,连接ED交AC于P,则PB+PE的最小值是______
【答案】分析:(1)由所给的例子可知,PB+PE的最小值是DE的长,在Rt△ADE中,利用勾股定理即可得出DE的长;
(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,求出A′C的长即可.
解答:解:(1)由所给的例子可知,PB+PE的最小值是DE的长,
∵正方形ABCD的边长为2,E为AB的中点,
∴AE=1,
在Rt△ADE中,
DE===
故答案为:

(2)如图所示:作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,
∵∠AOC=60°
∴∠A′OC=120°
作OD⊥A′C于D,则∠A′OD=60°
∵OA′=OA=2
∴A′D=
∴A′C=2
故答案为:
点评:本题考查的是轴对称--最短路线的问题,涉及到正方形、圆、等腰直角三角形的有关知识,熟知两点之间线段最短的知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解:
对于任意正实数a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有当a=b时,等号成立.若ab为定值P,则a+b≥2
P
,只有当a=b时,a+b有最小值2
P

(1)如图1,AB为半圆O的直径,C为半圆上的任意一点,(与点A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.根据图象验证,a+b≥2
ab
,并指出等号成立时的条件.

(2)根据上述内容,回答下列问题
①若m>0,只有当m=
1
1
时,m+
1
m
有最小值为
2
2

②如图2所示:A(-3,0),B(0,-4),P为双曲线y=
12
x
(x>0)
上任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时ABCD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
条件:
如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+AB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.
应用:
(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,连接ED交AC于P,则PB+PE的最小值是
5
5

(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解:
条件:
如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+AB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.
应用:
(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,连接ED交AC于P,则PB+PE的最小值是______;
(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是______.

查看答案和解析>>

科目:初中数学 来源:福建省期中题 题型:解答题

阅读理解以下材料:
如图1,△ABC中,D、E为△ABC的边AB、AC的中点,连结DE。
我们把线段DE叫做三角形的中位线,而三角形的中位线具有以下性质:DE∥BC,DE=BC。
请用此结论完成下列题目:
如图2,已知E、F、G、H分别是四边形ABCD的四条边的中点,顺次连结各点。
(1) 猜想四边形EFGH的形状,并说明你的猜想的正确性;
(2) 请问当四边形ABCD的对角线满足什么条件时,四边形EFGH 是矩形(不必说明理由)?
(3) 请问当四边形ABCD的对角线满足什么条件时,四边形EFGH 是菱形(不必说明理由)?
(4) 请问当四边形ABCD的对角线满足什么条件时,四边形EFGH 是正方形(不必说明理由)?

查看答案和解析>>

同步练习册答案