精英家教网 > 初中数学 > 题目详情
(1997•辽宁)已知⊙O1和⊙O2的半径分别为3和7,圆心距O1O2=4,则这两圆的位置关系是(  )
分析:根据圆心距与半径之间的数量关系可知两圆的位置关系是内切.
解答:解:∵⊙O1与⊙O2的半径分别为3和7,圆心距O1O2=4,
则7-3=4,
∴两圆的位置关系是内切,
故选D.
点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•辽宁)已知两等圆的半径为5cm,公共弦长8cm,则圆心距为
6
6
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•辽宁)已知扇形的圆心角为120°.弧长为20πcm,求扇形的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•辽宁)已知一个二次函数的图象经过(0,-3),(-2,5),(-1,0)三点,求这个二次函数的解析式,并写出函数图象的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•辽宁)已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数y=-
3x
图象上.
(1)求a的值;
(2)求一次函数的解析式,并画出它的图象;
(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x值的范围;
(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.

查看答案和解析>>

同步练习册答案