精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=﹣x2+3x与x轴的正半轴交于点A,点B在抛物线上,且横坐标为2,作BC⊥x轴于点C,⊙B经过原点O,点E为⊙B上一动点,点F在AE上.

(1)求点A的坐标;
(2)如图1,连结OE,当AF:FE=1:2时,求证:△ACF∽△AOE;
(3)如图2,当点F是AE的中点时,求CF的最大值.

【答案】
(1)解:令y=0,则﹣x2+3x=0,

解得x1=0,x2=3,

则A(3,0)


(2)解:如图1,

当x=2时,y=﹣22+3×2=2,

∴B(2,2).

∵BC⊥OA,

∴OC=2,AC=OA﹣OC=1.

∵AF:FE=1:2,

= =

∵∠CAF=∠OAE,

∴△ACF∽△AOE


(3)解:取OC的中点D,连接DE,BD,BE,BO,如图2,

则有OD=DC=1,BD= = ,BE=BO= =2

根据两点之间线段最短可得:

DE≤BD+BE= +2

∵AC=DC=1,AF=EF,

∴CF= DE≤

∴CF的最大值为


【解析】(1)只需令y=0,就可求出点A的坐标;(2)由于∠CAF=∠OAE,要证△ACF∽△AOE,只需证 = ,只需求出点B的坐标就可解决问题;(3)由点F是AE的中点,联想到三角形中位线定理,取OC的中点D,连接DE,BD,BE,BO,如图2,则有CF= DE,要求CF的最大值,只需求DE的最大值,只需运用两点之间线段最短就可解决问题.
【考点精析】通过灵活运用线段的基本性质和勾股定理的概念,掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若 = ,则 =用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.
(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,B、C、D在同一直线上,△ABC和△DCE都是等边三角形,且在直线BD的同侧,BE交AD于F,BE交AC于M,AD交CE于N.

(1)求证:AD=BE;
(2)求证:△ABF∽△ADB。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,水平放置的圆柱形排水管的截面半径为10cm,截面中有水部分弓形高为5cm,则水面宽AB为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠C为直角,AC=5,BC=12,在Rt△ABC内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:已知△ABC中,∠ABC=∠ACB=α,点D是AB边上任意一点,连结CD,在CD的上测作以CD为底边,α为底角的等腰△CDE,连结AE,试探究BD与AE的数量关系.
(1)尝试探究如图1,当α=60°时,小聪同学猜想有BD=AE,以下是他的思路呈现.请你根据他的思路把这个证明过程完整地表达出来;


(2)特例再探如图2,当α=45°时,请你判断线段BD与AE之间的数量关系,并进行证明;

(3)问题解决如图3,当α为任意锐角时,请直接写出线段BD与AE的数量关系是 . (用含α的式子表示,其中0°<α<90°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.
(1)在方格纸中画出以AB为一边的直角△ABC,点C在小正方形的顶点上,且△ABC的面积为3.
(2)在方格纸中将△ABC绕点C逆时针旋转90°,画出旋转后△DEC(点A与点D对应,点B与点E对应),请直接写出点A绕着点C旋转的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图2、图3为解答备用图]

(1)k= , 点A的坐标为 , 点B的坐标为
(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2﹣2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.

查看答案和解析>>

同步练习册答案