解:(1)由题意,可设抛物线的解析式为y=a(x-2)
2+1,
∵抛物线过原点,
∴a(0-2)
2+1=0,
a=-

;
∴抛物线的解析式为y=-

(x-2)
2+1=-

x
2+x;
(2)△AOB和所求△MOB同底不等高,且S
△MOB=3S
△AOB,

∴△MOB的高是△AOB高的3倍,即M点的纵坐标是-3,
∴-3=-

x
2+x,
即x
2-4x-12=0,
解得x
1=6,x
2=-2;
∴满足条件的点有两个:M
1=(6,-3),M
2=(-2,-3);
(3)存在;

由OB=CP=4,P的横坐标为6或-2,代入抛物线解析式得y=-

x
2+x=-3,
P(6,-3)或(-2,-3),
当点C与点A重合时,点A关于x轴的对称点P(2,-1)也为所求,
因此存在,点P的坐标为P
1(6,-3),P
2(-2,-3),P
3(2,-1).
分析:(1)设出抛物线的顶点式,代入原点坐标即可求出答案;
(2)由△AOB和所求△MOB同底不等高,得出△MOB的高是△AOB高的3倍,可知抛物线上点M的纵坐标,因此建立方程解答即可;
(3)由平行四边形的判定,对边平行且相等,进一步利用对称性即可解答.
点评:此题考查待定系数法求函数解析式,二次函数的对称性,三角形的面积以及平行四边形判定的运用,是一道综合性很强的题目.