精英家教网 > 初中数学 > 题目详情
14.【课本拓展】
我们容易证明,三角形的一个外角等于它不相邻的连个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
【尝试探究】
(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?
【初步应用】
(2)如图2,在△ABCA纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=50°;
(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请直接写出结论.
【拓展提升】
(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB、∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)

分析 (1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;
(2)利用(1)中的结论即可求出;
(3)根据角平分线的定义可得∠PCE=$\frac{1}{2}$∠BCE,∠PBD=$\frac{1}{2}$∠CBD,然后根据三角形内角和定理列式整理即可得解;
(4)根据四边形的内角和定理表示出∠BAD+∠CDA,然后同理(3)解答即可.

解答 解:(1)∠DBC+∠ECB
=180°-∠ABC+180°-∠ACB 
=360°-(∠ABC+∠ACB) 
=360°-(180°-∠A) 
=180°+∠A;
(2)∵∠1+∠2=∠180°+∠C,
∴130°+∠2=180°+∠C,
∴∠2-∠C=50°.
故答案为50°.
(3)∵BP,CP分别是外角∠DBC,∠ECB的平分线,
∴∠PBC+∠PCB=$\frac{1}{2}$(∠DBC+∠ECB)=$\frac{1}{2}$(180°-∠A),
在△PBC中,∠P=180°-$\frac{1}{2}$(180°-∠A)=90°-$\frac{1}{2}$∠A.
(4)如图1,

延长BA、CD于Q,
则∠P=90°-$\frac{1}{2}$∠Q,
∴∠Q=180°-2∠P. 
∴∠BAD+∠CDA
=180°+∠Q
=180°+180°-2∠P
=360°-2∠P.

点评 本题是三角形综合题,考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.阅读理解:
材料一、对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x4-3x2+1,就不能直接用公式法了,我们可以把二次三项式x4-3x2+1中3x2拆成2x2+x2,于是
有x4-3x2+1=x4-2x2-x2+1=x4-2x2+1-x2=(x2-1)2-x2=(x2-x-1)(x2+x-1).
像上面这样把二次三项式分解因式的方法叫拆项法.
(1)请用上述方法对多项x4-7x2+9进行因式分解;
材料二、把一个分式写成两个分式的和叫做把这个分式表示成部分分式,如何将$\frac{1-3x}{{x}^{2}-1}$表示成部分分式?
设分式$\frac{1-3x}{{x}^{2}-1}$=$\frac{m}{x-1}$$+\frac{n}{x+1}$,将等式的右边通分得:$\frac{m(x+1)+n(x-1)}{(x+1)(x-1)}$=$\frac{(m+n)x+m-n}{(x+1)(x-1)}$
由$\frac{1-3x}{{x}^{2}-1}$=$\frac{(m+n)x+m-n}{(x-1)(x+1)}$得$\left\{\begin{array}{l}{m+n=-3}\\{m-n=1}\end{array}\right.$解得$\left\{\begin{array}{l}{m=-1}\\{n=-2}\end{array}\right.$,所以$\frac{1-3x}{{x}^{2}-1}$=$\frac{-1}{x-1}$$+\frac{-2}{x+1}$.
(2)请用上述方法将分式$\frac{4x-3}{(2x+1)(x-2)}$写成部分分式的和的形式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程
(1)$\frac{x}{2}$-$\frac{5x+12}{6}$=1+$\frac{2x-4}{3}$
(2)$\frac{1}{2}${$\frac{1}{3}$[$\frac{1}{4}$($\frac{1}{5}$x-1)-6]+4}=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.求下列各式中的x
(1)16(x-2)2=81
(2)27(x+1)3+125=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知不等式$\frac{1+x}{2}$<$\frac{2x-1}{3}$的最小整数解是方程3(x-a)-1=8的解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)若5a+1和a-19是数m的两个不同的平方根,求m的值.
(2)如果y=$\frac{\sqrt{{x}^{2}-4}+\sqrt{4-{x}^{2}}}{x+2}$+3,试求2x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:(2$\sqrt{3}$-1)0+|-6|-8×4-1+$\sqrt{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.计算20160+($\frac{1}{2}$)-1-2sin60°-|$\sqrt{3}$-2|=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是(  )
A.AF=$\frac{1}{2}BC$B.四边形ACDE是矩形
C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形

查看答案和解析>>

同步练习册答案