精英家教网 > 初中数学 > 题目详情
7.如图,P为正方形ABCD的边BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′,交BA的延长线于点M,当AB=3,BP=2PC时,QM=$\frac{13}{4}$.

分析 过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=$\sqrt{13}$,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-2.在Rt△MHQ中运用勾股定理就可解决问题;

解答 过点Q作QH⊥AB于H,如图.
∵四边形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP=$\sqrt{A{B}^{2}+P{B}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
∴BH=$\sqrt{B{Q}^{2}-Q{H}^{2}}$=2.
∵四边形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折叠可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
设QM=x,则有MB=x,MH=x-2.
在Rt△MHQ中,
根据勾股定理可得x2=(x-2)2+32
解得x=$\frac{13}{4}$.
∴QM的长为$\frac{13}{4}$;
故答案为:$\frac{13}{4}$.

点评 本题主要考查了正方形的性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知反比例函数y=$\frac{8}{x}$,若x≥-2,则函数y的取值范围是y≤-4或y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AB>AC.
(1)用直尺和圆规作BC的垂直平分线MN(保留作图痕迹,不写作法和证明);
(2)若直线MN交AB于点D,连接CD,若AB=6,AC=4,求△ACD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿着网格线平移后,点A平移到点A1,在网格中作出平移后得到的△A1B1C1
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中作出旋转后得到的△A1B2C2
(3)在(2)的条件下,如果网格中小正方形的边长为1,求点B1经过的路径长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,矩形AOBC的两条边OA,OB的长是方程x2-18x+80=0的两根,其中OA<OB,沿直线AD将矩形折叠,使点C与y轴上的点E重合.
(1)求A,B两点的坐标;
(2)求直线AD的解析式;
(3)若点P在y轴上,平面内是否存在点Q,使以A,D,P,Q为顶点的四边形为矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程组:$\left\{\begin{array}{l}{3x-2y=3}\\{-2x+3y=-7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.将函数y=x2-2x-3的图象沿y轴翻折后与原图象合起来,构成一个新的函数的图象,若y=m与新图象有四个公共点,则m的取值范围为m>-4且m≠-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=4,将△ABC沿直线AC翻折180°后与原图形在同一平面内,若点B的落点记为B′,则DB′的长为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案