精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若A为EH的中点,求 的值;
(3)若EA=EF=1,求圆O的半径.

【答案】
(1)证明:连接OD,如图1,

∵OB=OD,

∴△ODB是等腰三角形,

∠OBD=∠ODB①,

在△ABC中,∵AB=AC,

∴∠ABC=∠ACB②,

由①②得:∠ODB=∠OBD=∠ACB,

∴OD∥AC,

∵DH⊥AC,

∴DH⊥OD,

∴DH是圆O的切线


(2)解:如图2,在⊙O中,∵∠E=∠B,

∴由(1)可知:∠E=∠B=∠C,

∴△EDC是等腰三角形,

∵DH⊥AC,且点A是EH中点,

设AE=x,EC=4x,则AC=3x,

连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,

∵AB=AC,

∴D是BC的中点,

∴OD是△ABC的中位线,

∴OD∥AC,OD= AC= ×3x=

∵OD∥AC,

∴∠E=∠ODF,

在△AEF和△ODF中,

∵∠E=∠ODF,∠OFD=∠AFE,

∴△AEF∽△ODF,

= =

=


(3)解:如图2,设⊙O的半径为r,即OD=OB=r,

∵EF=EA,

∴∠EFA=∠EAF,

∵OD∥EC,

∴∠FOD=∠EAF,

则∠FOD=∠EAF=∠EFA=∠OFD,

∴DF=OD=r,

∴DE=DF+EF=r+1,

∴BD=CD=DE=r+1,

在⊙O中,∵∠BDE=∠EAB,

∴∠BFD=∠EFA=∠EAB=∠BDE,

∴BF=BD,△BDF是等腰三角形,

∴BF=BD=r+1,

∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,

在△BFD和△EFA中,

∴△BFD∽△EFA,

=

解得:r1= ,r2= (舍),

综上所述,⊙O的半径为


【解析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD= AC= ,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为: ,则 = ,求出r的值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图)

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

月均用水量/t

频数

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】13分)(1)如图1,在四边形ABCD中,AB=AD∠BAD=120°∠B=∠ADC=90°EF分别是BCCD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BEEFFD之间的数量关系为

2)如图2,在四边形ABCD中,AB=AD∠B+∠D=180°EF分别是BCCD上的点,且∠EAF=∠BAD,线段BEEFFD之间存在什么数量关系,为什么?

3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到EF之间的夹角为70°,根据(2)的结论求EF之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥ACED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有(  )

A. ①②③④ B. ①②④ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,ABC中,AB=ACBAC=90°,点D是直线AB上的一动点(不和AB重合),BECDE,交直线ACF.

1)点D在边AB上时,试探究线段BDABAF的数量关系,并证明你的结论;

2)点DAB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示MPNQ分别垂直平分ABAC.

(1)若△APQ的周长为12BC的长;

(2)BAC105°求∠PAQ的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC 是等腰直角三角形,BC=AB,A 点在 x 负半轴上,直角顶点 B y 轴上,点 C x 轴上方.

(1)如图1所示,若A的坐标是(﹣3,0),点 B的坐标是(0,1),求点 C 的坐标;

(2)如图2,过点 C CDy 轴于 D,请直接写出线段OA,OD,CD之间等量关系;

(3)如图3,若 x 轴恰好平分BAC,BC x 轴交于点 E,过点 C CFx 轴于 F,问 CF AE 有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标及平行四边形ABDC的面积.

(2)在y轴上是否存在一点P,连接PA,PB,使=2,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

(3)点P是四边形ABCD边上的点,若△OPC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1E是直线ABCD内部一点,ABCD,连接EAED

1)探究猜想:①若∠A=30°D=40°,则∠AED等于多少度?

②若∠A=20°D=60°,则∠AED等于多少度?

③猜想图1中∠AEDEABEDC的关系并证明你的结论.

2)拓展应用:如图2,线段FE与长方形ABCD的边AB交于点E,与边CD 交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEBPFCEPF的关系(不要求说明理由).

查看答案和解析>>

同步练习册答案