精英家教网 > 初中数学 > 题目详情
7.解方程
(1)x2=2x;                     
(2)4y2=8y+1.(用配方法解)

分析 (1)先移项得到x2-2x=0,然后利用因式分解法解方程;
(2)先利用配方法得到(y-1)2=$\frac{5}{4}$,然后利用直接开平方法解方程.

解答 解:(1)x2-2x=0,
x(x-2)=0,
x=0或x-2=0,
所以x1=0,x2=2;
(2)y2-2y=$\frac{1}{4}$,
y2-2y+1=$\frac{1}{4}$+1,
(y-1)2=$\frac{5}{4}$,
y-1=±$\frac{\sqrt{5}}{2}$,
所以y1=1+$\frac{\sqrt{5}}{2}$,y2=1-$\frac{\sqrt{5}}{2}$.

点评 本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.用适当的方法解下列方程
(1)$\frac{1}{3}$(x+3)2=1
(2)2x2-x=0             
(3)3(x-2)2=x(x-2);
(4)9y2-6y+1=0
(5)4x2-12x-1=0(配方法)  
(6)2x2-3x-2=0(公式法)
(7)x2-5x-6=0.
(8)(y+2)2=(3y-1)2         
(9)(x-1)2-7(x-1)-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察图形,并探究下列问题:

(1)在第4个图中,共有白色瓷砖20块;在第n个图中,共有白色瓷砖n(n+1)块;
(2)在第4个图中,共有瓷砖42块;在第n个图中,共有瓷砖(n+2)(n+3)块;
(3)如果每块黑瓷砖25元,白瓷砖30元,铺设当n=10时,共需花多少钱购买瓷砖?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的$\frac{1}{2}$.
(1)甲、乙两个旅行团在该景点的门票费用分别为:甲80x+20y元;乙160x+10y元;(用含x、y的代数式表示)
(2)若x=10,y=6,求两个旅行团门票费用的总和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)x2-2x-3=0;                              
(2)$\frac{2x}{x-2}$=1-$\frac{1}{2-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如果关于x的一元二次方程x2-2x+m-1=0的一根为1,则m的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列各因式分解正确的是(  )
A.x2-4=(x-2)2B.x2+x-1=(x-1)2C.4x2-4x-1=(2x-1)2D.x3-4x=x(x+2)(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程:$\frac{x}{x-3}-\frac{7}{x+2}=\frac{15}{{{x^2}-x-6}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程:$\frac{2x-1}{x}$+$\frac{2x}{2x-1}$=3.

查看答案和解析>>

同步练习册答案