精英家教网 > 初中数学 > 题目详情

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为:
②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2 ,CD= BC,请求出GE的长.

【答案】
(1)垂直;BC=CF+CD
(2)

证明:成立,

∵正方形ADEF中,AD=AF,

∵∠BAC=∠DAF=90°,

∴∠BAD=∠CAF,

在△DAB与△FAC中,

∴△DAB≌△FAC,

∴∠B=∠ACF,CF=BD

∴∠ACB+∠ACF=90°,即CF⊥BD;

∵BC=BD+CD,

∴BC=CF+CD


(3)

解: 过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,

∵∠BAC=90°,AB=AC,

∴BC= AB=4,AH= BC=2,

∴CD= BC=1,CH= BC=2,

∴DH=3,

由(2)证得BC⊥CF,CF=BD=5,

∵四边形ADEF是正方形,

∴AD=DE,∠ADE=90°,

∵BC⊥CF,EM⊥BD,EN⊥CF,

∴四边形CMEN是矩形,

∴NE=CM,EM=CN,

∵∠AHD=∠ADC=∠EMD=90°,

∴∠ADH+∠EDM=∠EDM+∠DEM=90°,

∴∠ADH=∠DEM,

在△ADH与△DEM中,

∴△ADH≌△DEM,

∴EM=DH=3,DM=AH=2,

∴CN=EM=3,EN=CM=3,

∵∠ABC=45°,

∴∠BGC=45°,

∴△BCG是等腰直角三角形,

∴CG=BC=4,

∴GN=1,

∴EG= =


【解析】解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD;
故答案为:垂直;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
故答案为:BC=CF+CD;
(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论(3)根据等腰直角三角形的性质得到BC= AB=4,AH= BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.本题考查了全等三角形的判定和性质,正方形的性质,余角的性质,勾股定理,等腰直角三角形的判定和性质,矩形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ADC=88°,B=68°,ACD=BCD,AE平分∠BAC,则∠AED的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 并在数轴上表示解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°

(1)求证:ADBC=APBP
(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.

(3)应用请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC= ?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市南县大力发展农村旅游事业,全力打造洞庭之心湿地公园,其中罗文村的花海、涂鸦、美食特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.

(1)求去年该农家乐餐饮和住宿的利润各为多少万元?

(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.请问今年土特产销售至少有多少万元的利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BCAB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系并说明理由.

(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F是BC、CD边上的动点(包括端点处),若将纸片沿EF折叠,使得点C恰好落在AD边上点P处.设CF=x,则x的取值范围为

查看答案和解析>>

同步练习册答案