精英家教网 > 初中数学 > 题目详情

(本小题满分8分)

 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;

(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

 

 

(1)BE = DF,证明略。

(2)四边形AEMF是菱形,证明略。

解析:

证明:(1)∵四边形ABCD是正方形,

∴AB=AD,∠B = ∠D = 90°.

∵AE = AF,

∴BE=DF.                  4分

(2)四边形AEMF是菱形.

∵四边形ABCD是正方形,

∴∠BCA = ∠DCA = 45°,BC = DC.

∵BE=DF,

∴BC-BE= DC-DF. 即

∵OM = OA,

∴四边形AEMF是平行四边形.

∵AE = AF,

∴平行四边形AEMF是菱形.       8分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:038

(本小题满分4分)

 计算: sin60°+(-0

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分8分)
 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(山东青岛) 题型:解答题

(本小题满分8分)
 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(山东济南) 题型:解答题

(本小题满分8分)

 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.

(1)求证:BE = DF;

(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

 

查看答案和解析>>

同步练习册答案