精英家教网 > 初中数学 > 题目详情

如图(1)所示,在矩形ABCD中,AB=20cm,DC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果P,Q分别从A,C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).

(1)t为何值时,四边形APQD为矩形?

(2)如图6(2)所示,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,

⊙P和⊙Q外切?

答案:
解析:

解:(1)由题意知,当AP=DQAPDQ,∠A=90°时,四边形APQD为矩形,此时4t=20t,∴t=4(s),∴t4s时,四边形APQD为矩形. (2)PQ=4时,⊙P与⊙Q外切.①如果点PAB上运动,只有当四边形APQD为矩形时,PQ=4,由(1)t=4s②如果点PBC上运动,此时t5,则CQ5PQCQ54,∴⊙P与⊙Q外离.③如果点PCD上运动,且点P在点Q的右侧,可得CQ=tCP=4t24.当CQCP=4时,⊙P与⊙Q外切,此时t(4t24)=4,∴.④如果点PCD上运动,且点P在点Q的左侧,当CPCQ=4时,⊙P与⊙Q外切.此时4t24t=4,∴.∵点PA开始沿折线A?/FONT>B?/FONT>C?/FONT>D移动到D需要11s,点QC开始沿CD边移动到D需要20s,而,∴当t4s,⊙P叫⊙Q外切.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,那么△ABC的面积是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

全国第十届数学教育方法论暨MM课题实施20周年纪念活动于9月27在无锡市一中拉开帷幕.与会期间全国数十位老师上了精彩纷呈的展示课,其中青岛一位老师的“折纸”课,武汉的裴光亚教授评价是:“栩栩如生,五彩缤纷”.课堂上老师提出这样一个问题:你能用手中的矩形纸片尽可能大的折出一个菱形吗?有两位同学很快折出了各自不同的菱形,如下图:
精英家教网
(1)如果该矩形纸片的长为4,宽为3,则图1、图2两图中的菱形面积分别为:
 

(2)这时老师说,这两位同学折出的菱形都不是最大的,聪明的你能够想出最大的菱形应该怎样折出来吗?如图3所示:在矩形ABCD中,设AB=3,AD=4,请你在图中画出面积最大的菱形的示意图,标注上适当的字母,并求出这个菱形的面积.
(3)借题发挥:如图4,在矩形ABCD中,AB=2,AD=3,若折叠该矩形,使得点D与AB边的中点E重合,折痕交AD于点F,交BC于点G,边DC折叠后与BC交于点M.试求:△EBM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,在矩形ABCD中,动点P从点B出发,沿矩形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,把y看作x的函数,函数图象如图2所示,则△ABC的面积为(  )
精英家教网
A、10B、16C、18D、32

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丰台区一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为
8
5
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

查看答案和解析>>

同步练习册答案