精英家教网 > 初中数学 > 题目详情
6.若一次函数y=(3a-2)x+6随着x的增大而增大,则a的取值范围是a>$\frac{2}{3}$.

分析 根据一次函数的性质得3a-2>0,然后解不等式即可.

解答 解:根据题意得3a-2>0,解得a>$\frac{2}{3}$.
故答案为a>$\frac{2}{3}$.

点评 本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知A(1,m),B(n,1),直线l经过A、B两点,其解析式为y=-x+b.
(1)当b=5时,求m、n的值;
(2)若此时双曲线y=$\frac{k}{x}$(x>0)也过A、B两点,求关于x的方程x2-bx+k=0的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=ax2+bx+c经过点A(-3,0)、B(1,0)、C(0,3).
(1)求抛物线的解析式;
(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知∠BAC=90°,四边形ADEF是正方形且边长为1,则$\frac{1}{AB}$+$\frac{1}{BC}$+$\frac{1}{CA}$的最大值为1+$\frac{\sqrt{2}}{4}$,简述理由(可列式):$\frac{1}{AB}$+$\frac{1}{BC}$+$\frac{1}{CA}$的最大值=1+$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.三角形两边长分别是3,7,第三边是方程x2-13x+36=0的根,则三角形的周长为19.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.设M(p,q)为二次函数y=mx2-(m+1)x+1图象上的一个动点,当-3<p<0时,点M关于x轴的对称点都在直线y=-x-1的下方,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知:$\sqrt{2}$cos(x+15°)=1,则sinx的值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于点A(1,0),与y轴交于点B,其对称轴是x=-1,点C是y轴上一点,其纵坐标为m,连结AC,将线段AC绕点A顺时针旋转90°得到线段AD,以AC、AD为边作正方形ACED.
(1)用含m的代数式表示点D的横坐标为m+1.
(2)求该抛物线所对应的函数表达式.
(3)当点E落在抛物线y=ax2+bx+2上时,求此时m的值.
(4)令抛物线与x轴另一交点为点F,连结BF,直接写出正方形ACED的一边与BF平行时的m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,点B(3,6)在双曲线y=$\frac{k}{x}$(x>0)上,点D在双曲线y=-$\frac{8}{x}$(x<0)上,点A和点C分别在x轴和y轴上,且四边形ABCD是矩形,AB=2BC.
(1)求点B所在双曲线的解析式.
(2)求点A的坐标.

查看答案和解析>>

同步练习册答案