A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{9}{2}$$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
分析 根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,解直角三角形BDC,即可求出BC的长.
解答 解:
∵四边形ABCD是矩形,
∴∠A=90°,∠ABC=90°,AB=CD,
即EA⊥AB,
∵四边形BFDE是菱形,
∴BD⊥EF,
∵OE=AE,
∴点E在∠ABD的角平分线上,
∴∠ABE=∠EBD,
∵四边形BFDE是菱形,
∴∠EBD=∠DBC,
∴∠ABE=∠EBD=∠DBC=30°,
∵AB的长为3,
∴BC=3$\sqrt{3}$,
故选B.
点评 本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°.
科目:初中数学 来源: 题型:选择题
A. | 3cm | B. | 4cm | C. | 5cm | D. | 6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 2$\sqrt{3}$ | C. | 3 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 打开电视机,正在播放体育节目 | B. | 通常情况下,水加热到100℃沸腾 | ||
C. | 三角形的内角和为360° | D. | 掷一次骰子,向上一面是5点 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 任意画一个圆都是中心对称图形 | |
B. | 掷两次骰子,向上一面的点数差为6 | |
C. | 从圆外任意一点引两条切线,所得切线长相等 | |
D. | 任意写的一个一元二次方程有两个不相等的实数根 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com