精英家教网 > 初中数学 > 题目详情
(2009•营口)如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.

【答案】分析:(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;
(2)成立,可以根据四边都相等的四边形是菱形判定;
(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.
解答:解:
(1)四边形EFGH是菱形.(2分)

(2)成立.(3分)
理由:连接AD,BC.(4分)
∵∠APC=∠BPD,
∴∠APC+∠CPD=∠BPD+∠CPD.
即∠APD=∠CPB.
又∵PA=PC,PD=PB,
∴△APD≌△CPB(SAS)
∴AD=CB.(6分)
∵E、F、G、H分别是AC、AB、BD、CD的中点,
∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.
∴EF=BC,FG=AD,GH=BC,EH=AD.
∴EF=FG=GH=EH.
∴四边形EFGH是菱形.(7分)

(3)补全图形,如答图.(8分)
判断四边形EFGH是正方形.(9分)
理由:连接AD,BC.
∵(2)中已证△APD≌△CPB.
∴∠PAD=∠PCB.
∵∠APC=90°,
∴∠PAD+∠1=90°.
又∵∠1=∠2.
∴∠PCB+∠2=90°.
∴∠3=90°.(11分)
∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,
∴GH∥BC,EH∥AD.
∴∠EHG=90°.
又∵(2)中已证四边形EFGH是菱形,
∴菱形EFGH是正方形.(12分)
点评:此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2009•营口)如图,正方形ABCO的边长为,以O为原点建立平面直角坐标系,点A在x轴的负半轴上,点C在y轴的正半轴上,把正方形ABCO绕点O顺时针旋转α后得到正方形A1B1C1O(α<45°),B1C1交y轴于点D,且D为B1C1的中点,抛物线y=ax2+bx+c过点A1、B1、C1
(1)求tanα的值;
(2)求点A1的坐标,并直接写出点B1、点C1的坐标;
(3)求抛物线的函数表达式及其对称轴;
(4)在抛物线的对称轴上是否存在点P,使△PB1C1为直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省营口市中考数学试卷(解析版) 题型:解答题

(2009•营口)如图,正方形ABCO的边长为,以O为原点建立平面直角坐标系,点A在x轴的负半轴上,点C在y轴的正半轴上,把正方形ABCO绕点O顺时针旋转α后得到正方形A1B1C1O(α<45°),B1C1交y轴于点D,且D为B1C1的中点,抛物线y=ax2+bx+c过点A1、B1、C1
(1)求tanα的值;
(2)求点A1的坐标,并直接写出点B1、点C1的坐标;
(3)求抛物线的函数表达式及其对称轴;
(4)在抛物线的对称轴上是否存在点P,使△PB1C1为直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的旋转》(04)(解析版) 题型:解答题

(2009•营口)如图,在所给网格中完成下列各题:
(1)画出图1关于直线MN对称的图2;
(2)从平移的角度看,图2是由图1向______平移______个单位得到的;
(3)画出图1绕点P逆时针方向旋转90°后的图3.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2009•营口)如图,在所给网格中完成下列各题:
(1)画出图1关于直线MN对称的图2;
(2)从平移的角度看,图2是由图1向______平移______个单位得到的;
(3)画出图1绕点P逆时针方向旋转90°后的图3.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的对称》(02)(解析版) 题型:填空题

(2009•营口)如图,在梯形ABCD中,AB∥CD,∠BCD=90°,AB=25cm,BC=24cm.将该梯形折叠,点A恰好与点D重合,BE为折痕,那么梯形ABCD的面积为    cm2

查看答案和解析>>

同步练习册答案