【题目】如图,在边长为5的正方形ABCD中,点E在BC边上,连接AE,过D作DF//AE交BC的延长线于点F,过点C作CG⊥DF于点G,延长AE、GC交于点H,点P是线段DG上的任意一点(不与点D、点G重合),连接CP,将△CPG沿CP翻折得到,连接. 若CH=1,则长度的最小值为__________.
【答案】
【解析】
如图,作DM⊥AE于M,首先证明四边形DMHG是正方形,求出正方形DMHG的边长,以及AC的长,因为点P在线段DG上运动时,点G′在以C为圆心,CG为半径的圆上运动,所以当A、G′、C共线时,AG′最小.由此即可解决问题.
解:如图,作DM⊥AE于M.设CG=x,
∵AH∥DF,GH⊥DF,
∴∠MHG=∠HGD=∠DMH=90°,
∴四边形DMHG是矩形,
∵∠ADC=∠MDG=90°,
∴∠ADM=∠CDG,
在△ADM和△CDG中,
,
∴△ADM≌△CDG(AAS),
∴DM=DG,
∴四边形DMHG是正方形,
∴GH=DG,
∵CH=1,CG=x,
∴DG=CG+HC=x+1,
在Rt△DCG中,,
∴x=3,x=-4(舍去),
∴CG′=CG=3,
在Rt△ADC中,AC= ,
∵点P在线段DG上运动时,点G′在以C为圆心,CG为半径的圆上运动,
∴当A、G′、C共线时,AG′最小,
∴AG′的最小值为AC-CG′= .
故答案为:.
科目:初中数学 来源: 题型:
【题目】武汉市政府大力扶持大学生创业,童威在政府的扶持下投资销售一种进价为每盏20元的护眼台灯,销售过程中发现,每月销售量y(盏)与销售单价x(元)之间的关系可近似地看作一次函数:y=﹣10x+500.
(1)设每月获得的利润为w(元),求w与x的关系式.
(2)如果想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元.如果童威想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).
(1)求抛物线的顶点P的坐标(用含a的代数式表示);
(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.
①当时,请直接写出“W区域”内的整点个数;
②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为 .
(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,求出该直线对应的函数表达式.
(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=200米,∠BAD=90°过点D是否存在一条直线将四边形ABCD的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,BA=BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)若BC=2,BE=4,求⊙O半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,∠AOB=90°,OA=4,OB=3,点E在线段OA上,EP⊥OA交AB于点N,PM⊥AB,直线PB与AO交于点F.
(1)若AN=3,S△PBN=8,求PN的长;
(2)设△PMN的周长为C1,△AEN的周长为C2,若△PFE~△BAO且=,求OE的长;
(3)如图2,若OE=2,将线段OE绕点O逆时针旋转得到OE',旋转角为α (0°<α<90°),连接E'A、E'B,求E'A+E'B的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个三等分数字转盘,小红先转动转盘,指针指向的数字记下为,小芳后转动转盘,指针指向的数字记下为,从而确定了点的坐标,(若指针指向分界线,则重新转动转盘,直到指针指向数字为止)
(1)小红转动转盘,求指针指向的数字2的概率;
(2)请用列举法表示出由,确定的点所有可能的结果.
(3)求点在函数图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:
请根据所给信息,解答以下问题:
(1)表中 ; ;
(2)请计算扇形统计图中组对应的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰直角三角形中,,,点在斜边上(),作,且,连接,如图(1).
(1)求证:;
(2)延长至点,使得,与交于点.如图(2).
①求证:;
②求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com