【题目】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;EG⊥CG.
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
【答案】(1)见解析;(2)结论仍然成立,证明见解析
【解析】
试题分析:(1)根据直角三角形斜边中线的性质以及三角形外角定理即可证明.
(2)作GM⊥BC于M,⊥AB于N交CD于H,只要证明△GNE≌△GMC即可解决问题.
证明:(1)如图①中,∵四边形ABCD是正方形,
∴∠BCD=∠ADC=90°,∠BDC=,
∵EF⊥BD,
∴∠DEF=90°,
∵GF=GD,
∴EG=DG=GF=DF,GC=DG=GF=DF,
∴EG=GC,∠GED=∠GDE,∠GCD=∠GDC,
∵∠EGF=∠GED+∠GDE=2∠EDG,∠CGF=∠GCD+∠GDC=2∠GDC,
∴∠EGC=∠EGF+∠CGF=2∠EDG+2∠GDC=2(∠EDG+∠GDC)=90°,
∴EG⊥GC.
(2)图②中,结论仍然成立.
理由:作GM⊥BC于M,⊥AB于N交CD于H.
∵四边形ABCD是正方形,
∴∠A=∠ADC=90°,∠ABD=∠DBC=∠BDC=45°
∴GM=GN,
∵∠A=∠ANG=∠ADH=90°,
∴四边形ANHD是矩形,
∴∠DHN=90°,∠GDH=∠HGD=45°,
∴HG=DH=AN,同理GH=CM,
∵∠ENG=∠A=∠BEF=90°,
∴EF∥GN∥AD,∵GF=GD,
∴AN=NE=GH=MC,
在△GNE和△GMC中,
,
∴△GNE≌△GMC,
∴GE=GC,∠NGE=∠MGC,
∴∠EGC=∠NGM=90°,
∴EG⊥GC.
科目:初中数学 来源: 题型:
【题目】把a42a2b2+b4分解因式,结果是( )
A. a2(a22b2)+b4 B. (a2b2)2 C. (ab)4 D. (a+b)2(ab)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么
(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?
(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了创建书香校园,去年又购进了一批图书,经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等,求去年购进的文学书和科普书的单价各是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A. 1:2:3:4 B. 1:2:1:2 C. 1:1:2:2 D. 1:2:2:1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
A. 正数和负数互为相反数
B. 任何一个数的相反数都与它本身不相同
C. 任何一个数都有它的相反数
D. 数轴上原点两旁的两个点表示的数互为相反数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com