精英家教网 > 初中数学 > 题目详情
如图,在△AOB中,AO=AB,在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上.点O′、B′在x轴上.则点B'的坐标是   
【答案】分析:直接利用平移中点的变化规律求解即可.
平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
解答:解:∵AO=AB,点A的横坐标为2,
∴OB=4,B的坐标为(4,0),
要想让点O'、B'还在x轴上,只能左右平移.
∵点A的坐标是(2,2),移动到y轴上时,坐标变为(0,2),说明点A向左平了2个单位,即横坐标减2,
∴B点也遵循点A的移动规律,则点B'的坐标是(2,0).
故答案填:(2,0).
点评:解决本题的关键是得到三角形的平移方法,需注意只有左右移动才改变点的横坐标,左减,右加.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在△AOB中,OA⊥OB,OC⊥AB于C,OB=4
5
cm,OA=2
5
cm,以O为圆心4cm为半径作⊙O.求证:AB与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上.
(1)若C、D恰好是边AO,OB的中点,求矩形CDEF的面积;
(2)若tan∠CDO=
43
,求矩形CDEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上,若tanCDO=
4
3
,则矩形CDEF面积的最大值s=
100
7
100
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AOB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线;
(2)求证:AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△AOB中,A、B两点的坐标分别为(2,4)和(6,2),求△AOB的面积.

查看答案和解析>>

同步练习册答案