精英家教网 > 初中数学 > 题目详情
一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)
(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;
(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;
(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.
(1)证明:∵PB=PD,
∴∠2=∠PBD,
∵AB=BC,∠ABC=90°,
∴∠C=45°,
∵BO⊥AC,
∴∠1=45°,
∴∠1=∠C=45°,
∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,
∴∠3=∠4,
∵BO⊥AC,DE⊥AC,
∴∠BOP=∠PED=90°,
在△BPO和△PDE中

∴△BPO≌△PDE(AAS);
(2)证明:由(1)可得:∠3=∠4,
∵BP平分∠ABO,
∴∠ABP=∠3,
∴∠ABP=∠4,
在△ABP和△CPD中

∴△ABP≌△CPD(AAS),
∴AP=CD.

(3)解:CD′与AP′的数量关系是CD′=AP′.
理由是:设OP=PC=x,则AO=OC=2x=BO,
则AP=2x+x=3x,
由(2)知BO=PE,
PE=2x,CE=2x﹣x=x,
∵∠E=90°,∠ECD=∠ACB=45°,
∴DE=x,由勾股定理得:CD=x,
即AP=3x,CD=x,
∴CD′与AP′的数量关系是CD′=AP′
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为
A.7cmB.10cmC.12cmD.22cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是(     )
A.①②③B.②③④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是
A.9cmB.12cmC.9cm或12cmD.不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等腰三角形的两边长分别为4和9,则第三边为_________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.

(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是     
②设△BDC的面积为S1,△AEC的面积为S2。则S1与S2的数量关系是     
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想。
(3)拓展探究
已知∠ABC=600,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF =S△BDC,请直接写出相应的BF的长

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各组数可能是一个三角形的边长的是
A.1,2,4B.4,5,9C.4,6,8D.5,5,11

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若Rt△ABC中AC=3,BC=4,则AB=      

查看答案和解析>>

同步练习册答案