精英家教网 > 初中数学 > 题目详情

如图,AC.BD是矩形ABCD的对角线,过点D作DF∥AC交BC的延长线于F,则图中与△ABC全等的三角形共有(     )

A.4个  B.3个  C.2个    D.1个

 

【答案】

A.

【解析】

试题分析:根据题中条件,结合图形,可得出与△ABC全等的三角形为△ADC(SAS),△ABD(SAS),△DBC(SAS),△DCE(AAS)共4个.

故选A.

考点:三角形全等的判定.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课题学习:
(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是
正方
正方
形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是
形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是
形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:
S1=2S2
S1=2S2

(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案