精英家教网 > 初中数学 > 题目详情
已知:如图,AD是△ABC的边BC上的高,且AD是BD与DC的比例中项.求证:△ABC是直角三角形.

【答案】分析:由AD是BD与DC的比例中项,根据比例中项的性质,即可得AD2=BD•BC,∠B=∠B,可知△ABD∽△CAD,由AD是△ABC的边BC上的高,则可求得∠BAC=90°,故△ABC是直角三角形.
解答:证明:∵AD是BD与DC的比例中项,
∴AD2=BD•DC,

∵AD是△ABC的边BC上的高,
∴∠ADB=∠CDA=90°,
∴△ABD∽△CAD,
∴∠B=∠CAD,
∴∠BAC=∠BAD+∠CAD=∠BAD+∠B=90°,
∴△ABC是直角三角形.
点评:此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD是△ABC的高,试判断∠DAE与∠B、∠ACB之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )
A、3:2B、9:4C、2:3D、4:9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3.精英家教网
(1)求证:AB是⊙O的切线;
(2)点F是弧ACD上的一点,当∠AOF=2∠B时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.

查看答案和解析>>

同步练习册答案