【题目】如图,在矩形ABCD中,AB=8,AD=6,点P为矩形ABCD内一点,满足∠APB=90°,连结C、P两点,并延长CP交直线AB于点E.若点P是线段CE的中点,则BE=____.
【答案】
【解析】
根据∠APB=90°可知点P在以AB为直径的上,然后分两种情况讨论:①当点E在点A左侧时,②当点E在线段AB上时;根据三角形中位线的判定和性质求出PQ,再利用勾股定理求出OQ,然后分情况求出BQ的长即可解决问题.
解:∵∠APB=90°,
∴点P在以AB为直径的上,
分两种情况:①如图1,当点E在点A左侧时,O为所在圆的圆心,连接PO,作PQ⊥AB于Q,
∵点P是线段CE的中点,PQ∥BC,
∴PQ是△EBC的中位线,
∴PQ=,
∵OP=OA=,
∴OQ=,
∴BQ=,
∴BE=2BQ=;
②如图2,当点E在线段AB上时,O为所在圆的圆心,连接PO,作PQ⊥AB于Q,
同①可得:OQ=,
∴BQ=,
∴BE=2BQ=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴相交于点,与过点平行于轴的直线相交于点(点在第一象限).抛物线的顶点在直线上,对称轴与轴相交于点.平移抛物线,使其经过点、,则平移后的抛物线的解析式为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,AB=AC,点 M 在 BA 的延长线上,点 N 在 BC 的延长线上,过点 C 作CD∥AB 交∠CAM 的平分线于点 D.
(1)如图 1,求证:四边形 ABCD 是平行四边形;
(2)如图 2,当∠ABC=60°时,连接 BD,过点 D 作 DE⊥BD,交 BN 于点 E,在不添加任何辅助线的情况下,请直接写出图 2 中四个三角形(不包含△CDE),使写出的每个三角形的面积与△CDE 的面积相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,以的边为直径作,点C在上,是的弦,,过点C作于点F,交于点G,过C作交的延长线于点E.
(1)求证:是的切线;
(2)求证:;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有红、黄两个布袋,红布袋中有两个完全相同的小球,分别标有数字2和4.黄布袋中有三个完全相同的小球,分别标有数字﹣2,﹣4和﹣6.小贤先从红布袋中随机取出一个小球,记录其标有的数字为x,再从黄布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点M的一个坐标为(x.y)
(1)用列表或画树状图的方法写出点M的所有可能坐标;
(2)求点M落在双曲线y=上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=10,AC=8,BC=6.按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧交于点E;
③作射线AE;
④以同样的方法作射线BF,AE交BF于点O,连结OC,则OC为( )
A.2B.2C.D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A、B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC,若OA=5,AB=6,则点B到AC的距离为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com