【题目】在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.
(1)如图(1),,,⊙的半径为2,则 , ;
(2)如图(2),已知的一边在轴上,在上,且,,.
①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;
②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围 .
【答案】(1)2,;(2)①是⊙的切线,;②或.
【解析】
(1)根据图形M,N间的“和睦距离”的定义结合已知条件求解即可.
(2)①连接DF,DE,作DH⊥AB于H.设OC=x.首先证明∠CBO=30,再证明DH=DE即可证明是⊙的切线,再求出OE,DE的长即可求出点D的坐标.
②根据,得到不等式组解决问题即可.
(1)∵A(0,1),C(3,4),⊙C的半径为2,
∴d(C,⊙C)=2,
d(O,⊙C)=AC2=,
故答案为2;;
(2)①连接,作于.设.
∵,
∴,
解得,
∴,
∴,,
∵是⊙的切线,
∴平分,
∴,
∴,
∵,
∴,
∴,
∴是⊙的切线.
∵,
设,
∵,
∴,
∴,,
∴,
∴,
②∵
∴B(0,)
∴BD=
由,,得
解得或
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.
(1)求证:AC平分∠BAD;
(2)若⊙O的半径为,AC=6,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.
(1)求证:∠AED=∠CAD;
(2)若点E是劣弧BD的中点,求证:ED2=EGEA;
(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点C、D、B、F在一条直线上,且AB⊥BD,DE⊥BD,AB=CD,CE=AF.
求证:(1)△ABF≌△CDE;
(2)CE⊥AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若,则称点D是△ABC中BC边上的“好点”.
(1)如图2,△ABC的顶点是网格图的格点,请仅用直尺画出AB边上的一个“好点”.
(2)△ABC中,BC=9,,,点D是BC边上的“好点”,求线段BD的长.
(3)如图3,△ABC是的内接三角形,OH⊥AB于点H,连结CH并延长交于点D.
①求证:点H是△BCD中CD边上的“好点”.
②若的半径为9,∠ABD=90°,OH=6,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的半径为 4,是圆的直径,点是的切线上的一个动点,连接交于点,弦平行于,连接.
(1)试判断直线与的位置关系,并说明理由;
(2)当__________时,四边形为菱形;
(3)当___________时,四边形为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是长为10m,倾斜角为30°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin65°=0.90,tan65°=2.14)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com