精英家教网 > 初中数学 > 题目详情
15.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为(  )
A.5B.7C.8D.$\frac{13}{2}$

分析 作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=$\frac{\sqrt{3}}{2}$AB=4$\sqrt{3}$,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.

解答 解:作CH⊥AB于H,如图,
∵菱形ABCD的边AB=8,∠B=60°,
∴△ABC为等边三角形,
∴CH=$\frac{\sqrt{3}}{2}$AB=4$\sqrt{3}$,AH=BH=4,
∵PB=3,
∴HP=1,
在Rt△CHP中,CP=$\sqrt{(4\sqrt{3})^{2}+{1}^{2}}$=7,
∵梯形APQD沿直线PQ折叠,A的对应点A′,
∴点A′在以P点为圆心,PA为半径的弧上,
∴当点A′在PC上时,CA′的值最小,
∴∠APQ=∠CPQ,
而CD∥AB,
∴∠APQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP=7.
故选B.

点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列运算正确的是(  )
A.5x4-x2=4x2B.3a2•a3=3a6C.(2a23(-ab)=-8a7bD.2x2÷2x2=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解分式方程:$\frac{x+3}{2-x}$=1-$\frac{1}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.
(1)求证:△PCD是等腰三角形;
(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=$\frac{3}{5}$,CQ=5,求AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为(  )
A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,对称轴为直线x=$\frac{7}{2}$的抛物线经过点A(6,0)和B(0,-4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为(  )
A.2.8×103B.28×103C.2.8×104D.0.28×105

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.9的绝对值是(  )
A.9B.-9C.3D.±3

查看答案和解析>>

同步练习册答案