精英家教网 > 初中数学 > 题目详情
9.为了迎接暑假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,其中甲、乙两种服装的进价和售价如表:
服装价格
进价(元/件)mm-30
售价(元/件)320280
经调查:用900元购进甲服装的数量与用750元购进乙服装的数量相同.
(1)求m的值;
(2)若专卖店购进的甲、乙两种服装共200件,考虑市场需求和销售利润,要求购进甲服装的数量不超过80件,且总利润(利润=售价-进价)不少于26700元,问该专卖店有几种进货方案?
(3)专卖店准备在8月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么在(2)中所求的几种进货方案中,该专卖店要获得最大利润,应如何进货?

分析 (1)用总价除以单价表示出购进服装的数量,根据两种服装的数量相等列出方程求解即可;
(2)设购进甲种服装y件,表示出乙种服装(200-y)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据服装的件数是正整数解答;
(3)设总利润为W,根据总利润等于两种服装的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可

解答 解:(1)依题意得:$\frac{900}{m}$=$\frac{750}{m-30}$,
整理得:900(m-30)=750m,
解得:m=180,
经检验m=180是原方程的解并符合题意,
∴m=180;

(2)设购进甲种服装y件,购进乙中服装(20-y)件,依题意得:
(320-180)y+(280-150)(200-y)≥26700,
解得:y≥70;

(3)设总利润为w,则w=(140-a)y+130(200-y)=(10-a)y+26000(70≤y≤80);
①当0<a<10时,10-a>0,w随着y的增大而增大,
∴当y=80时,w有最大值,即此时应购进甲种服装80件,购进乙种服装120件;
②当a=10时,w=26000,(2)中所有方案获利都一样;
③当10<a<20时,10-a<0,w随着y的增大而减小,
∴当y=70时,w有最大值,即此时应购进甲种服装70件,购进乙种服装130件.

点评 本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用y表示出利润是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,E为AC上一点,EF∥AB交AF于点F,且AE=EF.求证:∠BAC=2∠1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某镇枇杷园的枇杷除了运往市区销售外,还可以让市民亲自去园内采摘购买,已知今年3月份该枇杷在市区、园区的销售价格分别为6元/千克、4元/千克,今年3月份一共销售了3000千克,总销售额为16000元.
(1)3月份该枇杷在市区、园区各销售了多少千克?
(2)4月份是枇杷旺季且适逢“三月三”小长假,为了促销,枇杷园决定4月份将该枇杷在市区、园区的销售价格均在3月份的基础上降低a%,预计这种枇杷在市区、园区的销售量将在3月份的基础上分别增长30%、20%,要使4月份该枇杷的总销售不低于18360元,则a的最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读下列解题过程:
解分式方程:$\frac{x}{x+1}$=$\frac{2x}{3(x+1)}$-1
解:原方程可以整理为$\frac{x}{x+1}$=$\frac{2x}{3(x+1)}$-1…第1步
两边同乘以3(x+1),得3x=2x-1…第2步
解得x=-1…第3步
所以原分式方程的解为x=-1…第4步
解决下面问题:
(1)上面解题过程中,体现的数学思想是C(填序号即可)
A.函数思想 B.方程思想 C.转化思想
(2)上面的解题过程有哪些错误?请你说明.
(3)上面的分式方程的正确解为x=-$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)试判断四边形BEGF的形状并说明理由.
(2)求$\frac{AE}{PG}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在四边形ABCD中,已知AD∥BC,AB⊥BC,点E,F在边AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2-$\sqrt{3}$,FC=2$\sqrt{3}$.
(1)BC=3.
(2)求点D到BC的距离.
(3)求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,直角三角板ABC放置于直角坐标系中,已知点B(0,2),点A(4,5),点C在第四象限,∠A=60°,∠C=30°,BC边与x轴交于点D.
(1)求AB的长度;
(2)求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在△ABC中,已知AC=6,BC=8,当∠B最大时,AB=2$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若x-2y=4,则(x-2y)2+2x-4y+1=25.

查看答案和解析>>

同步练习册答案