精英家教网 > 初中数学 > 题目详情
如图,已知长方形ABCD沿着直线BD折叠,使点A落在点E处,EB交DC于F,BC=3,AB=4,则点F到直线DB的距离为
15
8
15
8
分析:根据折叠的性质以及矩形的性质易证△DFB是等腰三角形,则利用勾股定理即可求得FC的长,则△BCF的面积可以求得,进而求得△BCD的面积,根据三角形的面积公式即可求得FG的长.
解答:解:作FG⊥BD于点G.
∵矩形纸片沿对角线BD翻折,点A落在点E处
∴∠FBD=∠ABD,△DEB≌△BCD,
∴∠DBE=∠CDB,
∴DF=FB,
∴△DFB是等腰三角形.
设FC=x,则BF=DF=4-x,
在直角△BCF中,BF2=CF2+BC2,即(4-x)2=x2+32
解得:x=
7
8

则S△BCF=
1
2
BC•CF=
1
2
×3×
7
8
=
21
16

∵S△BCD=
1
2
BC•CD=
1
2
×3×4=6,
∴S△BDF=S△BCD-S△BCF=6-
21
16
=
75
16

在直角△BCD中,BD=
BC2+BD2
=
32+42
=5,
又∵S△BDF=
1
2
BD•FG,
∴FG=
75
16
5
=
15
8

故答案是:
15
8
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

48、如图,已知长方形的台球桌台ABCD,有黑、白两球分别位于M、N两点的位置上,试问:怎样撞击白球N,才能让白球先撞台边AB,反弹后再击中黑球M.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,已知长方形ABCD中AB=8  BC=10,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,则DE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则EF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互
余的角是
∠B′EM,∠MEB,∠A′NE
∠B′EM,∠MEB,∠A′NE
 (只需填写三个角).

查看答案和解析>>

同步练习册答案