精英家教网 > 初中数学 > 题目详情
已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?
(1)证明:连接OC,
∵AE⊥MN,BF⊥MN,
∴AEBF,而AB≠EF,
∴四边形ABFE为梯形,
∵直线MN和⊙O切于点C,
∴OC⊥MN,
∴OCAEBF,
∴OA=OB,
∴OC为梯形ABFE的中位线,
∴AE+BF=2OC,
即:AB=AE+BF;

(2)证明:连接BC,
∵AB是直径,
∴∠ACB=90°,
∴∠ECA+∠FCB=90°,
∵∠CBF+∠FCB=90°,
∴∠CBF=∠ECA,
∵∠AEC=∠BFC=90°,
∴△AEC△CFB,
∴EC:BF=AE:CF,
∴CF•EC=AE•BF,
∵CF=EC=
1
2
EF,
∴EF2=4AE•BF,
∵AE=m,EF=n,BF=p,
∴n2=4mp;

(3)∵AB=AE+BF,⊙O的半径为5,AC=6,
∴AE+BF=10,BC=
AB2-AC2
=8,
∵△AEC△CFB,
∴AC:BC=EC:BF=6:8=3:4,
∵EC=FC,
∴CF:BF=3:4,
设CF=3x,BF=4x,
则(3x)2+(4x)2=64,
解得:x=
8
5

即BF=
32
5

∴AE=10-
32
5
=
18
5

∴AE•BF=
576
25

∴以AE、BF的长为根的一元二次方程为:x2-
576
25
x+10=0;

(4)由平移的性质,可得:四边形EFF′E′是矩形,
∴E′F′=EF,
∵EF2=4AE•BF,
∴E′F′2=4AE•BF,
∴n2=4mp;
∴将直线MN向上平行移动至与⊙O相交时,m、n、p之间的关系为:n2=4mp;向下平行移动至与⊙O相离时,m、n、p之间的关系为:n2=4mp.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若
AD
DB
=
2
3
,且AB=10,则CB的长为(  )
A.4
5
B.4
3
C.4
2
D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则
CD
的度数为何(  )
A.50°B.60°C.100°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于点E,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,以AB为直径作半圆与直角梯形ABED另一腰DE相切于C点,再分别以AC、BC、
AD、CD、CE、BE为直径作半圆.若AC=3,BC=4,则图中阴影部分的面积和为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙O、⊙O′于E、F,EF与AC相交于点P.
(1)求证:PA•PE=PC•PF;
(2)求证:
PE2
PC2
=
PF
PB

(3)当⊙O与⊙O′为等圆时,且PC:CE:EP=3:4:5时,求△PEC与△FAP的面积的比值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线y=
3
3
x+
3
与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为(  )
A.3B.6C.
3
3
2
D.3
3

查看答案和解析>>

同步练习册答案