【题目】某玩具厂计划一周生产某种玩具700件,平均每天生产100件,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | +5 | -2 | -4 | +13 | -6 | +6 | -3 |
(1)根据记录的数据可知该厂星期四生产玩具 件;
(2)产量最多的一天比产量最少的一天多生产玩具 件;
(3)根据记录的数据可知该厂本周实际生产玩具 件;
(4)该厂实行每周计件工资制,每生产一件玩具可得20元,若超额完成任务,则超过部分每件另奖5元;少生产一件扣4元,那么该厂工人这一周的工资总额是多少元?
【答案】(1)113;(2)19;(3)709 ;(4)14225元
【解析】
(1)根据“超产记为正、减产记为负”,从而用100加上13进一步计算即可;
(2)根据表格信息得知,周四产量最多,而周五最少,所以据此进一步计算即可;
(3)根据表格之中每天的实际产量情况进一步计算即可;
(4)根据(3)得出实际产量,然后按照奖罚制度进一步计算即可;
(1)∵超产记为正、减产记为负,
∴100+13=113(件),
故答案为:113;
(2)根据表格信息得知,周四产量最多,而周五最少,
∴(件),
故答案为:19;
(3)由题意得:524+136+63=9(件),
∴100×7+9=709(件),
故答案为:709;
(4)由(3)得实际产量为709件,超额完成部分为9件,
∴(元)
答:该厂工人这一周的工资总额是14225元
科目:初中数学 来源: 题型:
【题目】某中学学生步行到郊外旅行,七年级班学生组成前队,步行速度为4千米小时,七班的学生组成后队,速度为6千米小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米小时.
后队追上前队需要多长时间?
后队追上前队的时间内,联络员走的路程是多少?
七年级班出发多少小时后两队相距2千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长.
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是定长线段上一定点,点在线段上,点在线段上,点、点分别从点、点出发以、的速度沿直线向左运动,运动方向如箭头所示.
(1)若,当点C、D运动了2s,求的值;
(2)若点、运动时,总有,直接填空:______;
(3)在(2)的条件下,是直线上一点,且,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出定义:我们用(a,b)来表示一对有理数a,b,若a,b满足a﹣b=ab+1,就称(a,b)是“泰兴数”如2﹣+1,则(2,)是“泰兴数”.
(1)数对(﹣2,1),(5,)中是“泰兴数”的是 .
(2)若(m,n)是“泰兴数”,求6m﹣2(2m+mn)﹣2n的值;
(3)若(a,b)是“泰兴数”,则(﹣a,﹣b) “泰兴数”(填“是”或“不是”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以Rt的斜边AB为一边在同侧作正方形ABEF.点O为AE与BF的交点,连接CO,若CA = 2,,那么四边形ABOC的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形中,,.动点从点出发,沿线段向点运动,速度为;动点从点出发,沿线段向点运动,速度为.同时出发,设运动的时间是
(1)请用含的代数式表示下列线段的长度,当点在上运动时, , ,当运动到上时, , .
(2)当点在上运动时,为何值,能使?
(3)点能否追上点?如果能,求出的值;如果不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形两顶点为,,点D的坐标为,在上取点E,使得,连接,分别交,于M,N两点.
(1)求证:;
(2)求点E的坐标和线段所在直线的解析式;
(3)在M,N两点中任选一点求出它的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com