精英家教网 > 初中数学 > 题目详情
15.$\sqrt{3}$-$\sqrt{5}$的相反数是$\sqrt{5}$-$\sqrt{3}$,绝对值是$\sqrt{5}$-$\sqrt{3}$.

分析 直接利用相反数的定义结合绝对值的定义得出答案.

解答 解:$\sqrt{3}$-$\sqrt{5}$的相反数是:$\sqrt{5}$-$\sqrt{3}$,
绝对值是:$\sqrt{5}$-$\sqrt{3}$,
故答案为:$\sqrt{5}$-$\sqrt{3}$,$\sqrt{5}$-$\sqrt{3}$.

点评 此题主要考查了实数的性质,正确把握相反数以及绝对值的定义是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知:如图(1),四边形ABCD为正方形,E为CD边上的一点,连结AE,并以AE为对称轴,作与△ADE成轴对称的图形△AGE,延长EG(或GE)交直线BC于F.

(1)求证:DE+BF=EF;∠EAF=45°;
(2)若E为CD延长线上一点,如图(2),则线段DE,BF,EF之间有怎样的关系,∠EAF等于几度?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知点A(2,2),B(1,0),点C在坐标轴上,且三角形ABC的面积为2,请写出所有满足条件的点C的坐标:(3,0),(-1,0),(0,2),(0,-6).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为(  )
A.20 LB.25 LC.27LD.30 L

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.请你参与下面探究过程,完成所提出的问题.
(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70°,则∠BPC=125度;
(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A的数量关系?并说明理由.
(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D=α.
①直接写出∠BPC与α的数量关系;
②根据α的值的情况,判断△BPC的形状(按角分类).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.袋中有20个小球,这些球除颜色外均相同,小明从中随机摸出一个球,记下颜色后放回.如此重复摸了l000次,发现其中是红球的次数有300次.那么小明从中随机摸出一个球是红球的概率是0.3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.观察:∵$\sqrt{4}$<$\sqrt{7}$<$\sqrt{9}$,即2<$\sqrt{7}$<3,∴$\sqrt{7}$的整数部分为2,小数部分为$\sqrt{7}$-2,请你观察上述式子规律后解决下面问题.
(1)规定用符号[m]表示实数m的整数部分,例如:[$\frac{4}{5}$]=0,[π]=3,
填空:[$\sqrt{10}$+2]=5;[5-$\sqrt{13}$]=1.
(2)如果5+$\sqrt{13}$的小数部分为a,5-$\sqrt{13}$的小数部分为b,求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算
(1)(-2xy)2•(-$\frac{1}{2}$x2y3);
(2)(2a-b)(2a+3b).

查看答案和解析>>

同步练习册答案