精英家教网 > 初中数学 > 题目详情
22、如图所示,在等腰梯形ABCD中,AB∥CD,DC=AD=BC,且对角线AC垂直于腰BC,求这个梯形各内角的度数.
分析:因为是等腰梯形,所以∠DAB=∠B,作CE∥AD,根据垂直及边相等,在△ABC中,可求∠CAB的大小,进而求出各个内角.
解答:解:如图所示,过点C作CE∥AD
∵DC=AD=BC,∴∠EAC=∠ECA,∠CEB=∠B,
∵∠B+∠CAB=90°,即3∠CAE=90°
∴∠CAE=30°
∴∠B=60°=∠DAB
∠D=∠DCB=120°.
点评:熟练掌握等腰三角形的性质,能够通过作辅助线以及勾股定理找出角之间的内在联系,建立等效关系,最终得出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,点P为BC边上任意一点,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E、F、G,请你探索PE、PF、BG的长度之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

1、如图所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于点E,BF⊥AE于点F,请你添加一个条件,使△ABF≌△CDE.
(1)你添加的一个条件是
AE=BE

(2)请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

48、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,BF⊥AE于F,AE=BE.请你判断线段BF与图形中哪条线段相等,先写出你的猜想,再加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在等腰梯形ABCD中,AB∥CD,若AB+CD=4,并且∠AOB=120°,则该等腰梯形的面积为
 
(结果保留根号的形式).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在等腰梯形ABCD中,AD∥BC,过A作腰CD的平行线,AE∥CD,AB=AD=DC,∠B=60°
(1)△ABE是什么三角形?说明理由;
(2)已知,AB=5,试求梯形ABCD的周长及对角线AC的长.

查看答案和解析>>

同步练习册答案