精英家教网 > 初中数学 > 题目详情
已知OA、OB是⊙O的两条半径,且OA⊥BC,C为OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD,交OC过于点E.
(1)求证:CD=CE;
(2)若将图1中的半径OB所在的直线向上平行移动,交⊙O于B′,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?
分析:(1)连接OD,根据切线的性质以及三角形内角和定理证明∠CED=∠CDE,利用等角对等边即可证得;
(2)根据移动的性质可以得到:CF⊥AO于F,则与(1)相同的方法即可证明.
解答:解:(1)△CDE是等腰三角形.理由如下:
连接OD,则OD⊥CD,∠CDE+∠ODA=90°;
在Rt△AOE中,∠AEO+∠A=90°,
在⊙O中,∵OA=OD,
∴∠A=∠ODA,∠CDE=∠AEO,
又∵∠AEO=∠CED,
∴∠CED=∠CDE,
∴CD=CE;

(2)结论仍然成立.理由如下:
∵将原来的半径OB所在直线向上平行移动,
∴CF⊥AO于F,
在Rt△AFE中,∠A+∠AEF=90°,
连接OD,则∠ODA+∠CDE=90°,且OA=OD,
故可得∠A=∠ODA,∠AEF=∠CDE,
又∵∠AEF=∠CED,
∴∠CED=∠CDE,
∴CD=CE.
点评:本题考查了切线的性质,三角形内角和定理,以及等腰三角形的判定方法:等角对等边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知OA、OB是⊙O的半径,且OA=10,∠AOB=30°,AC⊥OB于C,则图中阴影部分的面积S=
 
.(π取3.14,结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

24、有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知OA、OB是⊙O的半径,且OA=5,∠AOB=15°,AC⊥OB于C,则图中阴影部分的面积(结果保留π)S=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:
成立
成立

(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD=BC.

查看答案和解析>>

同步练习册答案