【题目】为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.
(1)求甲、乙两种篮球每个的售价分别是多少元?
(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;
(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?
【答案】(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.
【解析】
(1)根据题意可以列出相应的方程组,从而可以解答本题;
(2)设学校计划购进甲种篮球m个,则学校计划购进乙种篮球(100m)个;根据题意列不等式即可得到结论;
(3)设购买跳绳a根,毽子b个,根据题意得方程10a+5b=290,求得b=582a>0,解不等式即可得到结论..
(1)设甲种篮球每个的售价为元,乙种篮球每个的售价为元.依题意,得
解得
答:甲种篮球每个的售价为30元,乙种篮球每个的售价为70元.
(2)设学校购进甲种篮球个,则购进乙种篮球个.
由已知,得.解得.
又,∴.
设购进甲、乙两种篮球学校花的钱为元,
则,
∴当时,取最小值,花最少钱为2990元.花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个.
(3)设购买跳绳根,毽子个,则,.
解得.
∵为正整数,
∴有28种进货方案.
科目:初中数学 来源: 题型:
【题目】涌泉镇是中国无核蜜桔之乡,已知某蜜桔种植大户冯大爷的蜜桔成本为2元/千克,如果在未来90天蜜桔的销售单价p(元/千克)与时间t(天)之间的函数关系式为p=,且蜜桔的日销量y(千克)与时间t(天)满足一次函数关系,其部分数据如下表所示:
时间t/天 | 1 | 10 | 20 | 40 | 70 | 90 |
日销售量y/千克 | 105 | 150 | 200 | 300 | 450 | 550 |
(1)求y与t之间的函数表达式;
(2)在未来90天的销售中,预测哪一天的日销售利润最大?最大日销售利润为多少元?
(3)在实际销售的后50天中,冯大爷决定每销售1千克蜜桔就捐赠n元利润(n<5)给留守儿童作为助学金,销售过程中冯大爷发现,恰好从第51天开始,和前一天相比,扣除捐赠后的日销售利润逐日减少,请求出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(a﹣1)x2+3ax+1图象上的四个点的坐标为(x1,m),(x2,m),(x3,n),(x4,n),其中m<n.下列结论可能正确的是( )
A.若a>,则 x1<x2<x3<x4
B.若a>,则 x4<x1<x2<x3
C.若a<﹣,则 x1<x3<x2<x4
D.若a<﹣,则 x3<x2<x1<x4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n(m≠0)与x轴交于点A,B,点A的坐标为(﹣2,0).
(1)写出抛物线的对称轴;
(2)直线过点B,且与抛物线的另一个交点为C.
①分别求直线和抛物线所对应的函数表达式;
②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2:y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,E是CD的中点,连接AE并延长交BC的延长线于点F
(1)求证:△ADE≌△FCE;
(2)若AB=2AD,∠F=30°,求∠FAB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,AB=AC=2,∠BAC=90°,点D是AC的中点,点P是BC边上的动点,连接PA、PD.则PA+PD的最小值为( )
A.B.C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)“校园手机”现象越来越受到社会的关注,小记者刘红随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:
(1)求这次调查的总人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)针对随机调查的情况,刘红决定从初三一班表示赞成的4位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com