精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值,最大值是多少?
分析:利用矩形相似,可得到比例线段,先设其中一段,MN=x,再利用面积公式可得到S关于x的二次函数,利用二次函数可求最大值.
解答:解:∵矩形MFGN∽矩形ABCD,
MN
AD
=
MF
AB
.(1分)
∵AB=2AD,MN=x,
∴MF=2x.(2分)
∴EM=EF-MF=10-2x(0<x<5).
∴S=x(10-2x)(5分)
=-2x2+10x
=-2(x-
5
2
2+
25
2

∴当x=
5
2
时,S有最大值为
25
2
.(8分)
点评:利用矩形相似选择二次函数模型,考查学生在新情境中的知识迁移能力.
同一直线[一分段]上所作的所有平行四边形,其[在整个直线段上平行四边形所余部分形成的]亏形与半线段上一平行四边形相似者,以该半线段上所作且相似于亏形的那个平行四边形(的面积)为最大.
本题实际上是一元二次方程的几何解释,由于考虑到难度的设计,最后将平行四边形相似改成了矩形,将原来要分类讨论的问题改成了只有一种情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案