分析 (1)根据平行四边形的性质得:AD∥BC,由平行线分线段成比例定理得:$\frac{BE}{AG}=\frac{EF}{AF}$,由x=1得:$\frac{AD}{AB}$=$\frac{EF}{AF}$=1,根据中点E得:AG=$\frac{1}{2}$AB,从而得出AG:AB的值;
(2)假设AB=1,则AD=x,由(1)得:BE=$\frac{x}{2}$,AG=$\frac{1}{2}$,DG=x-$\frac{1}{2}$,证明△GDH∽△EBA,根据面积比等于相似比的平方列式可求得y关于x的函数关系式;
(3)因为H是射线DC上一点,所以分两种情况:①如图2,当点H在边DC上时,根据已知DH=3HC,得$\frac{DH}{AB}=\frac{3}{4}$,再利用△GDH∽△EBA,列比例式可求得x的值;
②如图3,当H在DC的延长线上时,同理可求得x的值.
解答 解:(1)如图1,在□ABCD中,AD=BC,AD∥BC,
∴$\frac{BE}{AG}=\frac{EF}{AF}$,
∵x=1,即$\frac{AD}{AB}=\frac{EF}{AF}$=1,
∴$\frac{AD}{AB}$=$\frac{BE}{AG}$=1,
∴AD=AB,AG=BE,
∵E为BC的中点,
∴BE=$\frac{1}{2}$BC,
∴AG=BE=$\frac{1}{2}$BC=$\frac{1}{2}$AB,
即AG:AB=$\frac{1}{2}$;
(2)如图1,∵$\frac{AD}{AB}$=$\frac{EF}{AF}$=x,
∴不妨设AB=1,则AD=x,BE=$\frac{x}{2}$,
∵AD∥BC,
∴$\frac{BE}{AG}=\frac{EF}{AF}=x$,
∴AG=$\frac{1}{2}$,DG=AD-AG=x-$\frac{1}{2}$,
∵GH∥AE,
∴∠DGH=∠DAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠DGH=∠AEB,
在□ABCD中,∠D=∠ABE,
∴△GDH∽△EBA,
∴$\frac{{S}_{△GDH}}{{S}_{△EBA}}$=($\frac{DG}{BE}$)2,
∴y=$(\frac{x-\frac{1}{2}}{\frac{x}{2}})^{2}$,
∴y=$\frac{4{x}^{2}-4x+1}{{x}^{2}}$;
(3)①如图2,当点H在边DC上时,
∵DH=3HC,
∴$\frac{DH}{DC}=\frac{3}{4}$,
∴$\frac{DH}{AB}=\frac{3}{4}$,
∵△GDH∽△EBA,
∴$\frac{DG}{BE}=\frac{DH}{AB}$=$\frac{3}{4}$,
∴$\frac{x-\frac{1}{2}}{\frac{x}{2}}$=$\frac{3}{4}$,
解得:x=$\frac{4}{5}$;
②如图3,当H在DC的延长线上时,
∵DH=3HC,
∴$\frac{DH}{DC}$=$\frac{3}{2}$,
∴$\frac{DH}{AB}$=$\frac{3}{2}$,
∵△GDH∽△EBA,
∴$\frac{DG}{BE}=\frac{DH}{AB}=\frac{3}{2}$,
∴$\frac{x-\frac{1}{2}}{\frac{x}{2}}$=$\frac{3}{2}$,
解得:x=2,
综上所述,可知x的值为$\frac{4}{5}$或2.
点评 本题是相似形的综合题,考查了相似三角形的判定和性质、平行四边形的性质以及平行线分线段成比例定理,在相似形的综合题中,如果有平行的已知条件,可以直接根据平行线分线段成比例定理列比例式,不证明相似也可以;本题还利用了相似三角形的性质:相似三角形面积的比等于相似比的平方;注意第三问中采用分类讨论的方法,不要漏解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (x-4)(x+3) | B. | (x-6)(x+2) | C. | (x-4)(x-3) | D. | (x+6)(x-2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com