【题目】在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
【答案】(1)见解析;(2)成立,证明见解析;(3)边长为4,5,6的三角形
【解析】
(1)由A=2∠B,∠A=60°,得∠B=30°,∠C=90°,结合含30°角的直角三角形三边长的比例关系,即可得到答案;
(2)延长BA至点D,使AD=AC=b,连接CD,易证ACD,BCD是等腰三角形,CD=BC=a,AC=AD=b,BD=b+c,易证ACD~CBD,得,进而即可得到结论;
(3)由题意得:若△ABC是倍角三角形,由∠A=2∠B,则a2=b(b+c),且a>b,然后分情况讨论:当a>c>b时,当c>a>b时,当a>b>c时,分别求出符合要求的值,即可.
(1)∵∠A=2∠B,∠A=60°,
∴∠B=30°,∠C=90°,
∴c=2b,a=b,
∴a2=3b2=b(b+c);
(2)关系式a2=b(b+c)仍然成立,理由如下:
延长BA至点D,使AD=AC=b,连接CD,则ACD是等腰三角形,
∴∠ACD=∠D,
∵∠BAC是ACD的一个外角,
∴∠BAC=∠D+∠ACD=2∠D,
∵∠BAC=2∠B,
∴∠B=∠D,
∴CD=BC=a,∠B=∠ACD,
∴BD=AB+AD=b+c,
又∵∠D=∠D,
∴ACD~CBD,
∴,即:,
∴a2=b(b+c);
(3)若△ABC是倍角三角形,由∠A=2∠B,则a2=b(b+c),且a>b.
①当a>c>b时,设a=n+1,c=n,b=n﹣1,(n为大于1的正整数),
代入a2=b(b+c),得(n+1)2=(n﹣1)(2n﹣1),解得:n=5,
∴a=6,b=4,c=5,
②当c>a>b及a>b>c时,
均不存在三条边长恰为三个连续正整数的倍角三角形.
综上所述:边长为4,5,6的三角形即为所求倍角三角形.
科目:初中数学 来源: 题型:
【题目】为提升青少年的身体素质,郑州市在全市中小学推行“阳光体育”活动,河南省实验中学为满足学生的需求,准备再购买一些篮球和足球.如果分别用800元购买篮球和足球,购买篮球的个数比足球的个数少2个,足球的单价为篮球单价的.
(1)求篮球、足球的单价分别为多少元?
(2)学校计划用不多于5200元购买篮球、足球共60个,那么至少购买多少个足球?
(3)在(2)的条件下,若篮球数量不能低过15个,那么有多少种购买方案?哪种方案费用最少?最少费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)如图所示,下列结论中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如果某点的横坐标与纵坐标的和为10,则称此点为“合适点”例如,点(1,9),(﹣2019,2029)…都是“合适点”.
(1)求函数y=2x+1的图象上的“合适点”的坐标;
(2)求二次函数y=x2﹣5x﹣2的图象上的两个“合适点”A,B之间线段的长;
(3)若二次函数y=ax2+4x+c的图象上有且只有一个合适点”,其坐标为(4,6),求二次函数y=ax2+4x+c的表达式;
(4)我们将抛物线y=2(x﹣n)2﹣3在x轴下方的图象记为G1,在x轴及x轴上方图象记为G2,现将G1沿x轴向上翻折得到G3,图象G2和图象G3两部分组成的记为G,当图象G上恰有两个“合适点”时,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:
(1)甲车到达B地休息了 时;
(2)求甲车返回A地途中y与x之间的函数关系式;
(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.
(1)求证:∠CBP=∠ADB.
(2)若OA=2,AB=1,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.
(1)当点F与点A重合时,点G恰好到达点D,此时x= ,当EF⊥BC时,x= ;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;
(3)当S=15时,求此时x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com